Semantic indexing modelling of resources in personal and collective memories based on a P2P approach

Cristian LAI

Thesis Director: Claude MOULIN

Outline

- Motivation
- Semantic Indexing
- Indexing Patterns
- Community of Users
- Conclusion
- Future Work

Motivation Context

Recherche

- Loose community of users
 - Private and shared resources.
 - Experts and general users.
- Resources of different types.
- Any nature of community
 - Possible focus on community of teachers and students.

Motivation Issues

- How to manage publication and retrieval contexts?
 - How to match the description made during the retrieval context with a description made during the publication context?
- How to transform a user understandable description to machine understandable one?
 - o How to create a formal description from the user input?
- How to make possible the life of a decentralized community?
 - o How to manage a certain level of communication among members?
 - o How to manage elements allowing the indexing of resources?

Motivation Contribution

- · How to manage publication and retrieval contexts?
 - o Description extension.
 - The description is enlarged during publication to foresee different possible retrieval situations.
- How to transform a user understandable description to machine understandable one?
 - Model of Indexing Patterns.
- How to make possible the life of a decentralized community?
 - A distributed Semantic Wiki of the community and a distributed system of Notes.
 - A set of *Core resources* is managed for allowing the indexing.

Outline

- Motivation
- Semantic Indexing
- Indexing Patterns
- Community of Users
- Conclusion
- Future Work

Semantic Indexing

- P2P networks require the Boolean indexing
 - We choose to adopt the same Boolean indexing also for the personal memory.
- Indexing is the process of creating or updating an index
 - Given a list of resources it is necessary to create their proper descriptions different from the only title.
- The only title of a resource does not give a meaning universally known
 - In traditional filesharing systems it is usually used the title or a set of keywords to identify a resource.
- We consider semantic descriptions built manually by users.

Semantic Indexing **Description and query**

- A *description* is supplied during publication
- In a Boolean Index, for retrieving a resource it is required the same description
 - Exact matching between descriptions.
- A query is supplied during retrieval
 - It is equivalent to a description of a potential set of resources.

Semantic Indexing Ontologies and Knowledge bases

- · Expert community members are able to
 - Find the proper ontologies.
 - Build a population of an ontology grouping the most prominent individuals of the domain: knowledge base.
- Ontologies and knowledge bases are available within the community.
- Open description
 - Add keywords to the description.
 - Guidelines for preventing typing ambiguities.

Semantic Indexing Semantic description

Semantic Indexing Types of Descriptions

- Resource type
 - Address resources giving elements of description concerning the resource itself and not its content.
 - o Document written by Chomsky.
- Content type
 - Address resources giving elements of description that concern their content.
 - o Document about Chomsky.

Semantic Indexing Resource Type

- Document written by Chomsky.
- An ontology of domain is necessary. It should contain:
 - A concept that can represent the resource.
 - A concept that can represent an author.
 - A relation that binds the document to the author.
- The resource is considered as an instance of the concept that represents the resource itself.
- The system must show the concepts of the ontology that can represent the resource: *Entry Point*
 - o The ontology provider has to declare what are the Entry Points.

Semantic Indexing Content Type

- Document about Chomsky
- An ontology that represents the resource and its content is necessary.
- We have defined the System Ontology that contains
 - The concept system:Document that represents the resource.
 - The property system:hasInterest that paraphrases about.
- It is necessary to have an ontology of domain for extracting the concept describing the content
 - o It is necessary to represent the author Chomsky.

Semantic Indexing Description Tree: Content Type

utc Recherche

- The whole figure represents the Formal Description: it is an RDF Graph.
- The bordered part is used for the Final Description.

Semantic Indexing Description Tree: Resource Type

utc Recherche

- The whole figure represents the *Formal Description*: it is an RDF Graph.
- The bordered part is used for the Final Description.

Semantic Indexing Simple description

Definition

A Simple Description is a description where the root of the Description Tree has only one child.

- The general form of the part used for the Final Description.
- The blank nodes are virtual instances of concepts.
- The last node is a real individual of a concept defined in the ontology.

HEUDI SIC

Semantic Indexing Complex description: Description Tree

A Complex Description contains several paths. Each path starts from the root and relates a Simple Description *SDes* of the same document.

Semantic Indexing Complex description: definition

Definition

A Complex Description is a Description Tree where the root has more than one child. The tree is the merging of n simple descriptions. A Complex Description *CDes* is defined by the union of simple descriptions:

 $CDes = SDes_1 \lor SDes_2 \lor ... \lor SDes_n$

Semantic Indexing Complex description: publication and retrieval

- A resource *R* with *n* SDes is published *n* times, once with each SDes.
- A guery with one of the *n* descriptions must answer positively with the resource \mathcal{R} .
- A guery requesting for resources having a complex description is considered as a set of elementary queries (corresponding at a simple description). The result of the query is the intersection of the elementary query results.

$$Result(Q_{CDes}) = \bigcap_{i=1,p} Result(Q_{SDes_i})$$

Semantic Indexing Creation of keys

- A key used in the index is a representation of the semantic description of a resource and is written in a language based on RDF.
- The semantic description is an RDF graph (the Description Tree)
 - That contains blank nodes useless for indexing because they do not contain semantic information necessary for describing a resource.

Semantic Indexing An example of Description Tree

Very difficult documents.

Semantic Indexing A small knowledge base

The description contains the following triples:

_:lo rdf:type lom:LearningObject . _:lo lom:has_lomEducational :_lec . _:lec rdf:type lom:LomEducationalCategory . :lec lom:has difficulty lom:very difficult .

The N3 notation synthesizes the description as follows:

[a lom:LearningObject] lom:has_lomEducational [a lom:LomEducationalCategory ; lom:has_difficulty lom:very_difficult .]

Semantic Indexing Format of the key

Key:

{rdf:type,lom:LearningObject} {lom:has_lomEducational} {lom:has_difficulty,lom:very_difficult}

Semantic Indexing Keys extension

- Users should be able to find a resource with other characteristics than those exactly used for publishing
 - The System must also publish a resource with descriptions corresponding to these expected characteristics.
- The extension of keys produces a Complex Description
 - The *Simple Description* supplied by the resource provider is combined with others generated by the system.
 - The resource is published with each of them.

Semantic Indexing Keys extension: subsumption

- Documents about Stack.
- The ontology *Theory of Languages* contains the concept *lt:Stack* and the super-concept: *lt:Data_Structure*.
- Any request of resources concerning Data Structure should also return resources concerning Stack.

Key_initial: {rdf:type,system:Document} {system:hasInterest, lt:Stack} Key_extended: {rdf:type,system:Document} {system:hasInterest, It:Data_Structure}

Semantic Indexing Keys extension: facet

- Very difficult documents.
- A resource may be published with a specific difficulty level (lom:very_difficult).
- We consider also interesting to look for resources where the difficulty level has been defined.
- A request of resources where the difficulty level has been defined, should also return resources published with a specific difficulty level (instances of the concept lom:Difficulty).

Key_initial: {rdf:type,lom:LearningObject} {lom:has_lomEducational} {lom:has_difficulty,lom:very_difficult} Key_extended: {rdf:type,lom:LearningObject} {lom:has_lomEducational} {lom:has_difficulty}

Semantic Indexing Keys extension: category

- Documents about Chomsky.
- We consider that if the content of a resource is about a particular author, it is also about the concept of Author.

Key_initial: {rdf:type,system:Document} {system:hasInterest, lt:chomsky} Key_extended: {rdf:type,system:Document} {system:hasInterest, It:Author}

Semantic Indexing Keys extension: keyword (I)

- Documents about "Jeffrey D. Ullman".
- The ontology *Theory of Languages* **does not contain** any individual of the concept *lt:Author* referring to the author "*Jeffrey D. Ullman*"
 - We considered the possibility for the System to create a virtual individual of the concept *lt:Author*
 - And let the user enter the string "Jeffrey D. Ullman" as value of its property It:hasName

Key_initial: {rdf:type,system:Document} {system:hasInterest,It:Author} {It:hasName,"Jeffrey D. Ullman"^^xsd:string}

Semantic Indexing Keys extension: keyword (II)

• A resource whose content is about a particular author, is also about the concept of Author (Category extension).

Key_extended: {rdf:type,system:Document} {system:hasInterest, It:Author}

• A resource whose content is associated to a string, is also about a keyword (Keyword extension).

Key_extended: {rdf:type,system:Document} {system:hasKeyword, "Jeffrey D. Ullman"^^xsd:string}

Outline

- Motivation
- Semantic Indexing
- Indexing Patterns
- Community of Users
- Conclusion
- Future Work

Indexing Patterns Cases of indexing

		1 Step	2 Steps	Example	Extension
C.T.	N.V.	concept		treating of Family.	Subsumption
		property		about the semantic density of a LO.	Subsumption
		individual		treating of Chomsky.	Category
	V.	individual	property	treating of Ullman.	Keyword
		≥1 Step	>1 Step	Example	Extension
	N.V.	individual		having a known contributor.	Facet
R.T.	V.	individual	property	having an unknown contributor.	Facet + Keyword
		1 Step		Example	Extension
K.T.		string		about Medieval Italy.	

Legenda:

C.T.: Content Type R.T.: Resource Type K.T.: Keyword Type

V.: Virtual N.V.: Not Virtual

Indexing Patterns Objective

- An Indexing Pattern is a model of a case of indexing.
- An Indexing Pattern allows to follow a path within an ontology, defining a sequence of steps
 - At each step, the user interacts only with the necessary part of the ontology. The unnecessary parts are hidden.
- An Indexing Pattern is used
 - $_{\odot}\,$ For presenting the ontologies to users in a friendly and easy-to-use way
 - Developers can provide a User Interface able to guide the user through the ontologies.
 - For creating the keys of indexing.

Indexing Patterns Definition

- We call Indexing Pattern a triple
- $\mathscr{IP} = (\mathscr{D}, \mathscr{P}, \mathscr{A})$ where:
 - *D* is a *Description Template*, the generalized description of a resource. It contains some variables that are fixed during the steps followed by users for creating the description.
 - *P* is a *User Process*, the sequence of steps necessary for determining the values of the variables. It is composed of a sequence of assignments involving either SPARQL queries, or other types of user inputs.
 - *A* is an *Algorithm*, the sequence of computations used for creating the keys of indexing.

HEUDISIC

Indexing Patterns Description Template: Iterative Pattern

Outline

- Motivation
- Semantic Indexing
- Indexing Patterns
- Community of Users
- Conclusion
- Future Work

Community of Users Community and users

A Community is composed of users interested in collaborative activities

- *Expert users*: experts in the domain of interest of the community. They are in charge of the activities of providing the ontologies, their description and their publication.
- *Provider users*: they don't have an high level role. They usually publish and retrieve resources.
- *Consumer users*: they have a passive participation because they don't provide any contribution to the community. They just retrieve resources.

Community of Users Community and resources

- Community resources
 - Documents
 - The resources shared by users through the Shared Memory.
 - Core resources
 - Ontologies: used for creating the keys of indexing.
 - Notes: free text provided by a user to include additional information in the System.
 - . Wiki: a unique space of the System shared by all users.
 - Are published in the network with specific keys using the System Ontology.

Community of Users Core resources: Ontologies

- Are published in the network by expert users with a small additional description:
 - o a textual description concerning domain of the ontology;
 - o the set of Entry Points.
- The publication is made thanks a key of indexing assigned automatically by the System.
- Are retrieved from the network when the user starts the system.

Community of Users Core resources: Notes

- The use of Notes is considered of general purpose
 - The content of the Note may be any topic of interest for the user: messages for other users, memos, comments on certain resources, etc.
 - Notes are published using a keyword.
- Notes are published with a key assigned by the System.

Community of Users Core resources: Wiki

- The Wiki of the Community is composed of only one physical document containing several parts that may link to other resources, distributed in the network
 - Links are *Semantic*, refer to keys of indexing, are embedded in the HTML *link* tag.
- When a new community is created the System publishes the Wiki in the network from a template containing the skeleton with only the essential structure.

Community of Users Community and tools

A Community is supported by a Web platform equipped with a set of tools

- *Indexing Tool*: is used for choosing the ontologies retrieved from the network and for creating the keys of indexing.
- *Indexing Pool*: is a temporary container of (key, resource) pairs. It allows users to select the resource they want to index and to associate the key of indexing built with the Indexing Tool.
- Notes Editor: is a tool that enables users to create personal notes that are associated to keys of indexing and published.
- *Retrieval Tool*: allows users to submit queries to the system. It retrieves results and displays them.

Community of Users Web Platform

Community of Users Architecture of a Peer

Outline

- Motivation
- Semantic Indexing
- Indexing Patterns
- Community of Users
- Conclusion
- Future Work

Conclusion

- A model of Indexing Patterns
 - For transforming a user understandable description to a machine understandable one.
- Description extension mechanism
 - Form managing publication and retrieval contexts.
 - The description is enlarged during publication to foresee different possible retrieval situations.
- A Web platform
 - o That makes feasible the life of a decentralized community.
 - o Contains a set of Core resources for allowing the indexing.
 - Contains a distributed Semantic Wiki and a distributed system of Notes.

Outline

- Motivation
- Semantic Indexing
- Indexing Patterns
- Community of Users
- Conclusion
- Future Work

Future Work

- Advanced navigation system for ontologies
 - o A richer navigation system for ontologies for better organize the visual composition of represented data.
- Exchange with an external system.
 - o It may guery our system by creatin a semantic description of potential resources based on RDF
- Multilingual issues.
 - It concerns resources indexed on keywords or indexed on virtual individuals because the user has to add at least one string in order to describe this individual.
- Evaluation
 - Experiments should prove that the system can really support a real community.

Publications (I)

In proceedings

- Moulin, C., Lai, C. Ontologies based approach for semantic indexing in distributed environments. KEOD 2009, International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Madeira, 6 8 October 2009, Portugal. pp. 420-423.
- Moulin, C., Lai, C. Semantic indexing within a Semantic Desktop. WWW/Internet 2009, Rome, 19 22 November 2009, Italy, pp. 149-152.
- Moulin, C., Lai, C. Indexing Patterns within a Distributed System. In S. D. Fatos Xhafa, Santi Caballe, Ajith Abraham, ed., Second International Conference on Intelligent Networking and Collaborative Systems (INCOS 2010), Thessaloniki, 24 - 26 November 2010, Greece, pp. 206-213.
- Moulin, C., Lai, C. Reasoning in a distributed semantic indexing system. 4th International Workshop on Distributed Agent-based Retrieval Tools, DART 2010. 18 - 19 June, Geneva, pp. 88-98.

Publications (II)

Journal

 Moulin, C., Lai, C. Harmonization between personal and shared memories. International Journal of Software Engineering and Knowledge Engineering, 20(4), pp.521-531, 2010.

Book chapters

- Moulin, C., Lai, C. Semantic desktop: a common gate on local and distributed indexed resources. In A. Soro, E. Vargiu, G. Armano and G. Paddeu, eds., Information Retrieval and Mining in Distributed Environments, Springer, 2010. pp.61-76.
- Moulin, C., Lai, C. Query Building in a Distributed Semantic Indexing System. Advances in Distributed Agent-based Retrieval Tools, post-proceedings of DART 2010. (in press).

