
Summary

The present thesis explores the use of a semantic approach for indexing resources
that are shared among a community of users who are scattered in a peer-to-peer
network. The thesis contributes to the studies of Semantic Indexing approaches that
can be used both with resources owned within personal memories, and with resources
that are shared in a distributed network. Because the system is generic, the exact
nature of the distributed community can be left undefined but our narrower focus
is on applications in the e-learning domain.

To address the problem that resources have different types, an indexing system is
proposed that is based on the user point of view and is performed manually. Indeed,
because indices refer to the subjective information that is not necessarily contained
in the resources or that are hard to extract from documents that are not textual,
the indexing of such type of resources can only be done in an interactive way.

We show that a unique approach can be taken that allows one to store docu-
ments in personal or collective memories. The approach requires suitable browsing
interfaces for accessing ontologies that satisfy and facilitate indexing. We therefore
also define an Indexing Patterns system for managing ontologies that can be utilized
for creating indices. The method is intended to facilitate the browsing of ontologies
by showing only that part of the ontology that is useful for indexing and can be
employed by users of various operating systems.

A related problem that we address concerns the difference between the publica-
tion context and the retrieval context. The solution poroposed in this thesis foresees
different retrieval situations and queries during the time a resource is published and
builds the index based on those assumptions.

The intended practical application encapsulates in a transparent manner the
functionalities that the user requires for managing the resources. The development
of a prototype is guided by Architectural and Implementation descriptions of the
indexing system, both of which are described in the thesis.

Although the solution we offer is generic and can be used by different user com-
munities, the approach benefits Domain Specific Communities in particular, by as-
sisting specilized loose communities that are structured as peer to peer networks
and that allow publishing and searching of documents.

I



Contents

Acknowledgements I

Summary II

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Proposed Solution and Contributions . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Preliminaries 7

2.1 Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Representation Languages . . . . . . . . . . . . . . . . . . . . 8

2.1.2 SPARQL for Querying Data . . . . . . . . . . . . . . . . . . . 13

2.1.3 RDF and SPARQL Syntax . . . . . . . . . . . . . . . . . . . . 16

2.1.4 Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Fundamentals on Description Logics . . . . . . . . . . . . . . . . . . . 22

2.2.1 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . 23

2.3 P2P Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 P2P history . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Unstructured and Structured P2P Networks . . . . . . . . . . 29

2.3.3 Pastry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Related Work 35

3.1 Semantic Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Distributed Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Semantic Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Discussion of Related Work . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Requirements and choices . . . . . . . . . . . . . . . . . . . . . . . . 42

II



4 Research 43
4.1 Semantic Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1.3 Ontologies and Knowledge Bases . . . . . . . . . . . . . . . . 50
4.1.4 Types of Queries . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Resources Description . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Sequence of Properties . . . . . . . . . . . . . . . . . . . . . . 60
4.2.3 Description Tree . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.4 Simple Description . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.5 Complex Description . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Creation of Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Description Representation . . . . . . . . . . . . . . . . . . . . 68
4.3.3 Context Extension . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.4 Cases of Indexing . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Use of Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.1 Ontological Elements . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.2 The System Ontology . . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Indexing Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.2 Definition of Pattern . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3 Indexing Pattern on a Concept . . . . . . . . . . . . . . . . . 92
4.5.4 Indexing Pattern on an Individual . . . . . . . . . . . . . . . . 94
4.5.5 Indexing Pattern on a Keyword . . . . . . . . . . . . . . . . . 96
4.5.6 Iterative Indexing Pattern . . . . . . . . . . . . . . . . . . . . 98
4.5.7 Iterative Indexing Pattern Involving a Virtual Individual . . . 103

4.6 Main notions about Community . . . . . . . . . . . . . . . . . . . . . 107
4.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6.2 Community Resources . . . . . . . . . . . . . . . . . . . . . . 107
4.6.3 Semantic Desktop . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6.4 Semantic Links . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Implementation 117
5.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1.1 Community . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.1.2 User Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.1.3 Joining the Community . . . . . . . . . . . . . . . . . . . . . 124

5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.3 Function Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

III



5.3.1 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.2 P2P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3.3 Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Services Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4.1 P2PWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.4.2 PersonalMemoryWS . . . . . . . . . . . . . . . . . . . . . . . 145
5.4.3 SharedMemoryWS . . . . . . . . . . . . . . . . . . . . . . . . 148
5.4.4 OntologyWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5 Front-end Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.5.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.5.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 Experimentation 165
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.3 Test set of entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4 Test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.5 Running the Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.5.1 A Community of Multiple Nodes on the Same Computer . . . 170
6.5.2 A Community of Nodes on Several Computers . . . . . . . . . 174
6.5.3 A Community Involving Nodes Connected to Internet via ADSL178
6.5.4 A Community of Multiple Nodes on Several Computers . . . . 182

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7 Conclusions 187
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Bibliography 193

IV



List of Tables

2.1 Graph patterns designation . . . . . . . . . . . . . . . . . . . . . . . 19
5.1 HTTP methods and the operations they perform . . . . . . . . . . . 139
5.2 Details of the Bootstrap sub-resource . . . . . . . . . . . . . . . . . . 141
5.3 Details of the Status sub-resource . . . . . . . . . . . . . . . . . . . . 143
5.4 Details of the Disconnect sub-resource . . . . . . . . . . . . . . . . . 144
5.5 Details of the Publish sub-resource . . . . . . . . . . . . . . . . . . . 145
5.6 Details of the Search sub-resource . . . . . . . . . . . . . . . . . . . . 146
5.7 Details of the Reload sub-resource . . . . . . . . . . . . . . . . . . . . 147
5.8 Details of the Publish sub-resource . . . . . . . . . . . . . . . . . . . 148
5.9 Details of the Search sub-resource . . . . . . . . . . . . . . . . . . . . 149
5.10 Details of the Ger Results sub-resource . . . . . . . . . . . . . . . . . 150
5.11 Details of the Load sub-resource . . . . . . . . . . . . . . . . . . . . . 153
5.12 Details of the Query sub-resource . . . . . . . . . . . . . . . . . . . . 155
6.1 Set of ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 Cases of indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.3 DHT among 10 peers . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.4 DHT among 7 peers . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.5 DHT among 5 peers . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.6 DHT among 52 peers . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

V



List of Figures

2.1 The Semantic Web stack . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 RDF graph model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 RDF graph example . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 OWL example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 SPARQL examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Napster, centralized architecture . . . . . . . . . . . . . . . . . . . . . 27
2.7 Gnutella, fully decentralized architecture . . . . . . . . . . . . . . . . 28
2.8 Structured architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.9 PASTRY nodeId distribution . . . . . . . . . . . . . . . . . . . . . . 31
4.1 Semantic Description and Indexing . . . . . . . . . . . . . . . . . . . 46
4.2 Query paraphrase formulation . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Query formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Semantics of rdfs:range . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Representation of the query: Documents written by Chomsky . . . . . 53
4.6 Representation of the query: Documents about Chomsky . . . . . . . 53
4.7 Representation of the query: Documents about Grammar . . . . . . . 54
4.8 Knowledge base associated to an open query . . . . . . . . . . . . . . 55
4.9 Representation of the query: Very difficult documents . . . . . . . . . 56
4.10 Extended Query building . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.11 Representations of the same resources . . . . . . . . . . . . . . . . . . 58
4.12 Sequence of triples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.13 The query is considered split in two . . . . . . . . . . . . . . . . . . . 62
4.14 Tree associated to documents about Grammar, Very Difficult . . . . . 63
4.15 A Simple Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.16 Tree associated to a complex description . . . . . . . . . . . . . . . . 64
4.17 Each path corresponds to a description . . . . . . . . . . . . . . . . . 65
4.18 An entry of the distributed index . . . . . . . . . . . . . . . . . . . . 68
4.19 An entry of the local index . . . . . . . . . . . . . . . . . . . . . . . . 69
4.20 The description provided when an ontology is published . . . . . . . . 83
4.21 The concepts defined in the System Ontology . . . . . . . . . . . . . 85
4.22 The property system:hasInterest defined in the System Ontology . . . 87

VI



4.23 The property system:hasKeyword defined in the System Ontology . . 88
4.24 Indexing Pattern on a concept. . . . . . . . . . . . . . . . . . . . . . 92
4.25 Indexing Pattern on an individual. . . . . . . . . . . . . . . . . . . . 94
4.26 Indexing Pattern on a keyword. . . . . . . . . . . . . . . . . . . . . . 96
4.27 Iterative Indexing Pattern with 2 steps. . . . . . . . . . . . . . . . . . 98
4.28 Iterative Indexing Pattern with n steps. . . . . . . . . . . . . . . . . . 100
4.29 Iterative Indexing Pattern with n steps involving a virtual individual. 103
4.30 The Semantic Desktop . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.31 Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.32 Distributed Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.33 Distributed Semantic Links . . . . . . . . . . . . . . . . . . . . . . . 115
5.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2 The Community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 The user peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4 Features of the user peer . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5 The Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.6 The indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7 Relations among Memory, Index and Community . . . . . . . . . . . 122
5.8 Relations among User, Memory and Index . . . . . . . . . . . . . . . 123
5.9 Relations between User Peer and Community . . . . . . . . . . . . . 124
5.10 The System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.11 Class diagram of the ontology package . . . . . . . . . . . . . . . . . 127
5.12 Class diagram of the p2parea and other linked packages . . . . . . . . 131
5.13 Class diagram of the sharedmemory package . . . . . . . . . . . . . . 134
5.14 Class diagram of the personalmemory package . . . . . . . . . . . . . 136
5.15 Class diagram of the services package . . . . . . . . . . . . . . . . . . 138
5.16 The diagram of the Front-end . . . . . . . . . . . . . . . . . . . . . . 156
5.17 The Web user interface . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.18 The Indexing Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.19 The Indexing Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.20 The Notes tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.21 The Retrieval tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.1 Topology of P2P network of 10 nodes on the same computer . . . . . 170
6.2 Publication times of 550 entries over 10 nodes on the same computer 171
6.3 Search times of 550 entries over 10 nodes on the same computer . . . 173
6.4 Topology of P2P network of 7 nodes on several computers . . . . . . 174
6.5 Publication times of 550 entries over 7 nodes on 5 computers . . . . . 175
6.6 Search times of 550 entries over 7 nodes on 5 computers . . . . . . . . 177
6.7 Topology of P2P network of 5 nodes on computers connected via ADSL178
6.8 Publication times of 550 entries over 5 nodes on computers connected

via ADSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

VII



6.9 Search of 550 entries over 5 nodes on computers connected via ADSL 181
6.10 Topology of P2P network of 52 nodes on 5 computers . . . . . . . . . 182
6.11 Publication times of 550 entries over 52 nodes on 5 computers . . . . 183
6.12 Search times of 550 entries over 52 nodes on 5 computers . . . . . . . 185

VIII



Chapter 1

Introduction

The Web 2.0, often called the social Web, supports the sharing of resources and
the communication between members of a loose community. The communities have
various cultural goals in a specific domain and focus on the exchange of significant
resources. Several fields are concerned with studying this phenomenon, one of the
fundamental tasks being the development of fast access to relevant documents at
one’s disposal, either for individual or for collective use.

The creation of new resources is a daily concern for community members. On the
one hand, users consider the resources to be private and use their personal tools for
resource management. On the other hand, they willingly agree to share the resources
with other people. In this scenario, a common system of resource management
becomes necessary that can be used for both private and shared memories and that
is at the same time very simple and not too restrictive.

In order to share and retrieve resources, it is also necessary to give them a uniform
description. This is why the file sharing diffusion cannot be based on the document
title only, as is commonly done in well-known music or video sharing systems.

One of the aims of this work is to determine whether the approach of making
resources available from semantic P2P networks can be an effective solution, the
main problem being the semantic indexing of resources and the attainability of the
ontologies. Suitable browsing interfaces within ontologies that satisfy and facilitate
the indexing will be required. Indeed, this type of indexing can only be done in
an interactive way because it refers to subjective information that is not necessar-
ily contained in resources or that is hard to extract from documents that are not
necessarily textual.

1



1 – Introduction

1.1 Motivation

The social Web focuses on the social life of users. People are motivated to com-
municate, collaborate on some projects and share documents about their interests
and the topics they are working on. Technical aspects as well as human, social and
economic must be considered together. Our research takes place in this context,
but with some peculiarities. We consider people belonging to a loose community.
They do not rely on a centralized site but on a network of peer systems. They
are not interested in maintaining direct and superficial contacts by only exchanging
messages. They prefer to share real and useful resources that concern the focus of
the community. They also want to interact with a simple and intuitive interface in
order to access their privatly-owned resources and those shared with other users.
The resources have to be properly described by users before becoming a part of
the community. The system of resource management needs to have an index (an
indexing system is required) constituted by entries that contain descriptions and
access points to resources. Each member of the community owns a memory that
has a private part that contains personal resources and a public part that contains
those documents that have been shared with the community. A unique system for
managing both parts of the memory is necessary. In a distributed system, resources
are managed by a distributed index, i.e. that each member owns a part of the index
in a transparent manner.

The main activities that the members of a community regularly do concern the
indexing of private resources and their publication in the distributed system, on the
one hand, and the retrieving of resources from the network and/or the private storage
from the common requesting system, on the other hand. We identify these two
activities as contexts. A context is represented by the conditions and circumstances
(factors) that are relevant to the event of publication and retrieval. The publication
context relates the information required to describe a resource to be published and
supplied by the resource provider. The retrieval context regards the information
required to search a resource and supplied by the user interested in discovering
resources. The difference between a publication context and a retrieval context is
one of the issues that needs to be addressed.

Documents contained in the memory may have different types (text, audio, video,
archive, etc.) and different storing formats. The title of the resource is usually not
sufficient for uniquely identifying a resource, as in ordinary file sharing systems [61],
because the resources are created locally but their meaning is not universally known.
The challenge is, therefore, (i) the development of a unique indexing system for
supporting the management of resources in the public part of the user’s memory and
also in its private part, and (ii) the development of an application that encapsulates
in a transparent manner the functionalities that the user requires for managing the
resources.

2



1.2 – Proposed Solution and Contributions

Even though we mainly focus on the field of education, the exact nature of the
community is not really important because the challenges that need solving, are
shared by different P2P networks and the solution we propose, is generic.

Our research aims to face the problems outlined above, by showing (i) how
Semantic Web standards can fully characterize indexing, and (ii) how a web based
semantic desktop can benefit a community of users in sharing resources.

1.2 Proposed Solution and Contributions

Our study addresses the techniques that are needed for creating an index of man-
aged distributed resources. We consider people who belong to a loose community
where everybody takes part as a peer in a peer to peer (P2P) network. The index is
distributed via a data structure called Distributed Hash Table (DHT) [24] [81] [96].
Several projects [24] [81] make use of DHTs in order to distribute the data over a
large number of peers, that contribute storage to a community of users. The use
of such infrastructure in general is justified by most relevant features of P2P sys-
tems, such as decentralization, scalability, security, etc. To distribute data among
thousands or millions of peers involves not only an access to huge amounts of in-
formation, but also confidence in a robust system free of restriction from a central
authority. Moving from the client-server paradigm to the P2P networks model, in-
formation retrieval problem becomes more articulated. Even though P2P network
architectures cannot offer hyper-textual navigation between resources and lose the
hierarchical organization of data, they keep some of the earlier advantages, such as
the easy scalability of resources, the reliability on data transferring, and low oper-
ating costs. A P2P architecture avoids both physical and semantic bottlenecks that
limit information and knowledge exchange [95].

Each node of the network contains a part of the whole data structure. The index
is composed of entries that are pairs of data (key, value). In traditional file sharing
systems, the key is created through the title of the resource (e.g. the title of a song).
In our case, the key could be a set of keywords or a semantic description provided by
the user for describing the resource. The value is the access point to the resource.

The publication is the operation of inserting a resource inside the DHT. More
exactly it is the operation of inserting a new index entry in the DHT. The discovery
is the operation which allows to find some resources in the network that correspond
to a research key.

Many search algorithms that are based on sequences of keywords try to get
more efficient results but they often lack contextual information. For improving the
quality of the search and facilitating the selection of results that are more related to
a specific request, semantic indexing is a valid candidate. The semantic information
strictly related to a resource is included in a semantic description and then inserted

3



1 – Introduction

in the distributed index.
We propose a semantic approach based on domain ontologies. We mainly con-

sider semantic indexing where semantic keys are associated with documents. This
method allows reasoning based on ontologies that may enlarge the results of a search
or may retrieve related documents, even complementary files. The Semantic Web
languages give information a well-defined meaning, thus enabling the definition of
machine processable descriptions. This remains an interesting and promising idea,
especially today when the Semantic Web vision has crystallized a set of standard
and well supported languages (RDF [9] , OWL [8], SPARQL [28]) and related tech-
nologies. In our solution, all the keys used for representing a document in the index
represent its semantic description and are written in a language based on RDF.
Ontologies used for indexing have to be included in the network by expert members
and can be subsequently used by all the members. In that sense, we can consider
the semantic index as a knowledge base that is created by any user who wants to
share a resource.

Due to the diversity of types and formats that the resources we intend to manage
may have, they would need to be manually indexed. Only some of the resources
could be automatically analysed for indexing but even then, external information
that cannot be found inside a document would need to be manually added in order
to better describe the content and its use. Indeed, the indexing of such types of
resources can only be done manually in an interactive way, because they refer to
subjective information that is not contained in the resources or that is hard to
extract from documents that are not text-based.

Automatic indexing of textual resources also lacks subjective information that
can be provided by an expert with specific skills in a particular domain. E.g., we
can extract a lot of useful information from the text of a mathematics homework
but probably cannot determine automatically whether it is a difficult exercise or
not. Automatic information extraction from non-textual documents, such as images,
videos, etc. is possible to a certain degree but often requires sophisticated systems
that are difficult to install and need a special license. This is in contradiction with
our motivation. In the challenge of ”bridging the semantic gap”, automatically
generating concept-based descriptions for multimedia information currently suffers
from the lack of tools that can automatically manipulate high-level concepts that
could be attached to an image or a video [23].

To resolve the issues related to the contexts of publication and retrieval, we
propose to consider different retrieval situations already in the publication context by
addressing possible queries to which the resource should respond positively. In doing
that, we use reasoning based on the ontologies involved in the semantic description
of a resource. The semantic indexing allows reasoning based on ontologies that may
increase the number of results of a search.

Ontologies used for indexing would have to be presented to users in a friendly and

4



1.2 – Proposed Solution and Contributions

easy-to-use way. One of the most significant problems is the way users navigate on-
tologies for discovering ontological elements that are useful for indexing. They must
select concepts, individuals and properties in order to annotate the resource to be
indexed. Normally user interfaces provide a tree based browsing system. Tools such
as Protégé [66], OntoEdit [97], OilED [7], Swoop [52] have been directed in this way.
There are also several attempts to provide a graphical interface, sometimes based on
3D graph representation [17]. Most of them are meant for general purpose use and
are missing a tool for selecting only useful parts of the ontologies. Furthermore, the
way to display the content of the ontologies is wasteful because all the information
is provided simultaneously, forcing the user to browse a large amount of data. To
solve this problem we propose a navigation system within the ontologies that is able
to guide the user during the selection of the important information. This system is
based on patterns that we have identified during the indexing process. The solution
we propose allows to associate with a document the meta-information that describes
its content and to publish it in the network. The URL of the resource tied up to
the meta-information allows its further access. Our solution leaves open the choice
of the ontologies required for the descriptions. The user has just to select ontologies
that are actually shared among communities [40], otherwise the discovery of the
documents published in the network would be impossible. The only characteristic
we use is the Unified Resource Identifiers (URI) of concepts, relations and instances
of concepts. We also chose ontologies because we wanted any software agent to be
able to reason with the knowledge base in order to build most appropriate queries
when searching for resources. Indeed, we consider that the resources published in
the network may be used diversely.

The existence of an ontology navigation system is not enough. Users need also
tools for the access to the functionality of the community. We propose to equip the
system with different applications as part of a Semantic Desktop [88][89], so that
they are all integrated within a web application. Users rely on a set of tools similar
to a traditional computer desktop. The back-end of the architecture consists of a
set of web services managing the resources and giving access to the P2P network.
A unifying web user interface gives common access to the services and allows easy
communication between them.

Contributions of this thesis are the following:

• A very fine semantic indexing system of resources.

• Algorithms for publishing and searching resources compatible with the defini-
tion of publication and retrieval contexts.

• A modelling approach that supports the definition of well-structured indexing
models, defined as Patterns. The patterns aim at supporting the creation of

5



1 – Introduction

user interfaces that can display only that part of the ontology that a user
considers beneficial for indexing, and associate a description to a resource.

• Suitable user interfaces allowing the browsing of ontologies, that satisfy and
facilitate the indexing of resources.

• Modelling of a Semantic Desktop: software architecture consisting of different
applications that are useful for managing the semantically described resources.

1.3 Thesis Outline

We study the consequences of the context in which our research takes place and we
propose an engineering system that satisfies the requirements, allowing the manage-
ment of both memories in a compatible way. In particular, we describe the back-end
user system organized around a service-oriented architecture and we present the de-
sign of the user interface. We show that the scalability of the system is ensured
by the architecture we propose. We also analyse the indexing system that has to
anticipate furture queries in order to generalize the resource descriptions.

This thesis is organized as follows:

• Chapter 2, preliminary formalisms and low level systems needed for our re-
search.

• Chapter 3, related, state of the art work, concerning the theoretical aspects of
this thesis.

• Chapter 4, conceptualization of the proposed approach.

• Chapter 5, design and implemented software.

• Chapter 6, experimental evaluation of the work.

• Chapter 7, conclusions and future work.

6



Chapter 2

Preliminaries

This chapter introduces the technological and scientific background required in our
research. The areas of interest are Semantic Web, Description Logics and P2P
Systems. In section 2.1 we present an overview of the Semantic Web and related
technologies. Section 2.2 explains fundamentals on Description Logics. Section 2.3
outlines the concepts of P2P Systems and the main topologies of P2P networks.

2.1 Semantic Web

The term ”Semantic Web” [10] [13] was coined by Tim Berners-Lee. His vision of
the Web where information is shared, data have a format that machines can natu-
rally understand, and where machines seamlessly collaborate among each other, has
been perceived from the beginning as ”an extension of the current Web, in which
information is given well-defined meaning, better enabling computers and people to
work in cooperation”. Semantic Web is about enriching the current Web with ma-
chine processable data, to enable machines to share information and thus better
help humans navigate, combine and retrieve information from the vast repository
of knowledge that is today’s Web. Even though the Semantic Web has been widely
explored during the last years, it still requires a lot of work to make the full Semantic
Web dream come true. The W3C1 has standardized a broad set of technologies that
support the Semantic Web by enabling information descriptions that are formal,
unambiguous and machine processable. The Semantic Web is based on a Stack (see
figure 2.1)2 of languages and protocols that are specifically designed to capture and
communicate domain knowledge to diverse entities. All layers of the stack need to
be implemented to achieve full visions of the Semantic Web. In this work we recount
the technologies from the bottom up to OWL that are currently standardized. At

1http://www.w3.org/2001/sw/
2http://www.w3.org/2007/03/layerCake.png

7



2 – Preliminaries

the bottom there are technologies, well-known from the hypertext web, that provide
the basis for the semantic web. Of these technologies, the XML markup language
enables the creation of documents that are composed of structured data (Semantic
web gives meaning - semantics - to structured data) and the URI provides means for
uniquely identifying semantic web resources (Semantic Web needs unique identifica-
tion to allow provable manipulation with resources in the top layers). Middle layers
contain technologies (see section 2.1.1) standardized by W3C to enable building
semantic web applications. At top layers there are technologies not yet standard-
ized or that contain just ideas that should be implemented in order to realize the
Semantic Web.

Figure 2.1. The Semantic Web stack

These languages aim to provide machine processable semantics for the domain
knowledge. In the following section, we will look at the relevant representation
languages that lay at the core of the Semantic Web.

2.1.1 Representation Languages

2.1.1.1 RDF

The Resource Description Framwork (RDF) [9] [59] [56], the basic layer of the Se-
mantic Web stack, is the foundation for processing metadata. It provides interop-
erability between applications that exchange machine processable information on

8



2.1 – Semantic Web

the Web. Basically, RDF defines a data model for describing machine processable
semantics in data. It is an assertional language and describes information in the
form of triples. The basic data model consists of three object types: i) Resources,
a resource may be an entire Web page; a part of a Web page; a whole collection of
pages; or an object that is not directly accessible via the Web; e.g. a printed book.
Resources are always named by URIs. ii) Properties, a property is a specific aspect,
characteristic, attribute, or relation used to describe a resource. iii) Statements, an
RDF statement consists of a specific resource, together with a named property and
the value of that property for the resource in question.

These three parts of a statement are identified as triples and are called the
subject, predicate and object. RDF defines triples as basic modelling primitives and
introduces a standard syntax for them. An RDF document will define properties in
terms of the resources to which they apply. RDF is a graph data model (see Figure
2.2): the subjects and objects of triples are represented as nodes in the graph, while
the predicates are represented as directed arcs connecting pairs of nodes.

subject object

predicate

Figure 2.2. RDF graph model

A set of RDF triples is therefore referred to as an RDF graph, and it corre-
sponds to the assertion of all the triples in it. Thus, the meaning of an RDF
graph is the logical conjunction of all the relations asserted by its triples. A node
in an RDF graph can be either a URI, or a literal, or a blank node. A URI
used as a node identifies either an individual (http://www.example.com/utc) or
a kind of thing (http://xmlns.com/foaf/0.1/Organization, the class represent-
ing organization in the FOAF specification [19]). A URI can be used either as
the subject or the object of an RDF triple. A literal can appear only in the ob-
ject position of a triple; it represents a value. A Literal can be typed when it
is associated with a datatype, or plain in the form of a string with an optional
tag specifying a language (Italian, French, English, etc.). RDF datatypes rely on
the conceptual framework from XML Schema datatypes [15]. The syntactic form
"37"^^http://www.w3.org/2001/XMLSchema#integer usually represents a typed
literal, where the literal value is enclosed in quotes, and the datatype URI follows
the symbol ^^. A blank node is one that cannot be identified by a URI, and that
is not a literal. A blank node is also referred to as anonymous node or anonymous
resource, and it serves the purpose of representing resources which cannot be ex-
plicitly identified at present. Although a blank node has no name, it has a node
identifier (usually having the form _:d, where d can be replaced with any string)
that is unique in the scope of the RDF graph containing the blank node itself.

9



2 – Preliminaries

An arc in an RDF graph is always a URI, which identifies the property be-
ing asserted. For example the URI http://xmlns.com/foaf/0.1/topic_interest
identifies a property that relates the organization topic of interest.

RDF has model-theoretic semantics, which is specified in [47], and an XML
serialization, which is defined in [9]. An RDF graph can be serialized to differ-
ent XML documents which have the same interpretation. Although the XML for-
mat has some advantages, the RDF/XML serialization is very verbose, and hardly
readable for human beings. URIs are written using qualified names: for example,
http://xmlns.com/foaf/0.1/Organization is shortened to foaf:Organization,
provided that the foaf prefix has been properly declared. Note that, for the sake
of brevity we will usually omit the declaration of namespaces prefixes. We will also
adopt the traditional convention of graphically representing URIs and blank nodes
as ellipses, and literals as rectangles [59].

Figure 2.3 shows an example of RDF graph. First it defines the prefixes of
qualified names used to shorten the URIs. The figure describes a resource ex:utc
whose type is foaf:Organization. The resource has a topic ’interest’ which is a
ex:Field of interest labelled as a xsd:String ”Computer Science”.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix ex: <http://www.example.com/example.owl#>.

foaf:Organization

ex:utc

"Université de Compiègne"^^xsd:string

ex:Field of interest

"Computer Science"^^xsd:string

rdf:type

foaf:name

fo
af
:t
op
ic

in
te
re
st

rd
f:
ty
pe

rdfs:label

Figure 2.3. RDF graph example

2.1.1.2 RDFS

Even though RDF is a simple and flexible language, the modeling primitives it offers
are very basic and the language has limited expressiveness. Therefore, the Semantic
Web stack layers more powerful languages on top of RDF. Those languages provide

10



2.1 – Semantic Web

more expressive constructs but they retain the basic RDF characteristics, and ul-
timately yield RDF graphs. The first of such layers is RDF Schema (RDFS) [18],
which defines a vocabulary of RDF resources that can be used to describe proper-
ties of other RDF resources. RDF Schema extends (or enriches) RDF by assigning
an externally specified semantics to specific resources, e.g., to rdfs:subClassOf, to
rdfs:Class etc. RDFS does not actually impose any schema on RDF; rather it aug-
ments RDF providing information about the interpretation of RDF graphs.

Core classes are rdfs:Resource, rdf:Property, and rdfs:Class. Everything that is
described by RDF expressions is viewed to be an instance of the class rdfs:Resource.
The class rdf:Property is the class of all properties used to characterize instances of
rdfs:Resource, i.e., each relation is an instance of rdf:Property. Finally, rdfs:Class is
used to define concepts in RDFS, i.e., each concept must be an instance of rdfs:Class.

Core properties are rdf:type, rdfs:subClassOf, and rdfs:subPropertyOf. The
rdf:type relation models instance-of relationships between resources and classes. A
resource may be an instance of more than one class. The rdfs:subClassOf relation
models the subsumption hierarchy between classes and is supposed to be transitive.
Again, a class may be a subclass of several other classes. The rdfs:subPropertyOf
relation models the subsumption hierarchy between properties. If some property P2

is a rdfs:subPropertyOf another property P1, and if a resource R has a P2 property
with a value V , this implies that the resource R also has a P1 property with a value
V.

Core constraints are rdfs:range and rdfs:domain, which can be used to couple
properties with value and subject classes in a global way. Multiple domain/range
constraints on single properties are interpreted through conjunctive semantics: if a
property P has as its domain classes A and B, an instance a that is the subject of
a statement using P , is entailed to be an instance of both A and B.

RDFS can be regarded as a simple Description Logic with limited expressiveness,
and it is actually the language underpinning the actual Web Ontology Language
OWL [8].

2.1.1.3 OWL

The Semantic Web uses XML based formalism to define customized tagging schemes
and RDF flexible approach to representing data. Following the Stack, the next ele-
ment required for the Semantic Web is a web ontology language which can formally
describe the semantics of classes and properties used in web documents. The term
Ontology is used in different ways by different people. Pidcock [73] writes that
”People use the word to mean different things, e.g.: glossaries and data dictionaries,
thesauri and taxonomies, schema and data models, and formal ontologies and infer-
ence.” Uschold [100] states ”An ontology may take a variety of forms, but necessarily
it will include a vocabulary of terms, and some specification of their meaning. This

11



2 – Preliminaries

includes definitions and an indication of how concepts are interrelated which collec-
tively impose a structure on the domain and constrain the possible interpretations
of terms.” The word ontology in philosophy, since its origin denotes the study of the
nature of existence, as well as of the basic categories of being and their relations.
Gruber [41] defines an ontology as ”a specification of a conceptualization”3. Thus
we can regard OWL as a language for writing specification of conceptualizations.
An ontology defines the terms used to describe and represent an area of knowledge.
People, databases, and applications use ontologies to share domain information (a
domain is just a specific subject area or area of knowledge, like medicine, tool man-
ufacturing, real estate, automobile repair, financial management, etc.). Ontologies
include computer-usable definitions of basic concepts in the domain and the rela-
tionships among them. They encode knowledge in a domain and also knowledge
that spans domains. In this way, they make that knowledge reusable.

The word ontology has been used to describe knowledge bases with different
degrees of structure. These range from simple taxonomies, to metadata schemes,
to logical theories. The Semantic Web needs ontologies with a significant degree of
structure, specifying descriptions for the following kinds of concepts:

• classes (general things) in the many domains of interest;

• the relationships that can exist among things;

• the properties (or attributes) those things may have.

Ontologies are usually expressed in a logic-based language, so that detailed, accu-
rate, consistent, sound, and meaningful distinctions can be made among the classes,
properties, and relations. Some ontology tools can perform automated reasoning
using the ontologies, and thus provide advanced services to intelligent applications
such as: conceptual/semantic search and retrieval, software agents, decision sup-
port, speech and natural language understanding, knowledge management, intelli-
gent databases, and electronic commerce.

The core constructs of OWL derive from a long history of languages based on
Description Logics, including DAML+OIL4, OIL [50], and CLASSIC [16]. OWL is
actually a family of three increasingly expressive sublanguages designed for the use
by specific communities of implementers and users:

• OWL Lite, supports classification hierarchies, and simple constraints, such as
number restrictions, but only with values zero and one;

3http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
4DAML+OIL, March 2001, http://www.daml.org/language/

12



2.1 – Semantic Web

• OWL DL, is a compromise between expressiveness and computational com-
plexity; OWL DL corresponds to the Description Logic, and it guarantees
completeness (all entailments are computed), and decidability (all computa-
tions will finish in a finite time);

• OWL Full, gives the maximum expressiveness in the detriment of computa-
tional efficiency (incompleteness); for example, OWL Full treats classes simul-
taneously as collections of individuals and as individuals in their own right.

Figure 2.4 shows an OWL fragment; it highlights some differences in the expres-
siveness among the three OWL sublanguages: for example OWL DL enables the
definition of disjoint classes, and OWL-Full allows one to declare that two classes
are the same (in this case the classes are treated as individuals).

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix ex: <http://www.example.org/>.

foaf:Person rdf:type owl:Class .

ex:Department rdf:type foaf:Organization ;

rdfs:subClassOf ex:Enterprise .

ex:Director rdf:type owl:Class ;

owl:disjointWith ex:Car ;

owl:sameAs foaf:Person .

O
W

L
L
it
e

O
W

L
D
L

O
W

L
F
u
ll

Figure 2.4. OWL example

We observe that every OWL sublanguage can be mapped to RDF, as described
in [70]. In this thesis we will work mainly at the RDF level; and when we use
ontologies, we will usually refer to OWL DL ontologies (unless otherwise specified).

2.1.2 SPARQL for Querying Data

SPARQL is the query language for RDF that allows to query for triples from an RDF
triple store. It has been standardized by W3C [75]. Superficially it resembles the
Structured Query Language (SQL) [6] used to get data from a relational database.
In many respects, though, a triple data source and a relational database are funda-
mentally different. A relational database is table-based, meaning that data is stored

13



2 – Preliminaries

in fixed tables with a foreign key relationship that defines the relationship between
rows in the tables. A triple data source stores only triples. Triples are added con-
tinuously while describing a thing. Relational databases constrain the model to the
layout of the database. RDF doesn’t use foreign and primary keys either. It uses
URIs, the standard reference format for the Semantic Web. By using URIs, a triple
data source immediately has the potential to link to any other data in any triple
data source. That plays to the distributed strengths of the Web. Because triple
data source are large collections of triples, SPARQL expresses queries by defining a
template for matching triples, called a Graph Pattern. The triples in a triple data
source make up a directed labelled graph that describes a set of resources. To get
data out of the triple data sources using SPARQL, it is necessary to define a pattern
that matches the statements in the graph.

SPARQL has capabilities for querying required and optional graph patterns and
their conjunctions and/or disjunctions; it also supports value testing and filtering of
results. SPARQL queries can yield either result sets or RDF graphs.

A SPARQL graph pattern is made of triple patterns. A triple pattern is essentially
an extension of an RDF triple allowing variables in the subject, predicate, and object
positions. The SPARQL triple pattern { ex:utc foaf:topic_interest ?y . }

would match any RDF triple whose subject is the resource ex:utc and whose pred-
icate is given by the URI foaf:topic_interest.

SPARQL supports various kinds of graph patterns: the basic one is a set of triple
patterns, and each query result must match all triple patterns in the set. Graph
patterns can be combined in groups (where each query result must match all graph
patterns) or unions (where any graph pattern in the union can match). Additionally,
a graph pattern can contain an optional subgraph, which extends the results of the
non-optional subgraph without causing the overall graph pattern to fail. Finally,
SPARQL allows for filtering query results with built-in or custom functions, and for
modifying solution sequences (ordering, uniqueness, etc.).

SPARQL has various query forms, among which SELECT (returning the variable
bindings that result from each match of the query graph pattern), ASK (returning
a boolean that indicates whether the query graph pattern matches or not), and
CONSTRUCT (returning an RDF graph specified by a graph template).

Figure 2.5 shows some examples of SPARQL queries. The related graph pattern
requires two different resources identified by the variables ?x and ?y, and interested
in the same resource ?d.

The ASK query (see figure 2.5(a)) returns the boolean value true.
The SELECT query (see figure 2.5(b)) returns a list of solutions, where every

solution has a mapping with the required variables ?x and ?y.
The CONSTRUCT query (see figure 2.5(c)) builds an RDF graph, where the couples

of people who share an interest in the same resource are members of the same
organization. In this case, two groups are generated and the graph pattern returns

14



2.1 – Semantic Web

two solutions mappings.

ASK

WHERE {

?x foaf:interest ?d .

?y foaf:interest ?d .

FILTER ( ?x != ?y )

}

true
returns

(a) ASK query form

SELECT ?x ?y

WHERE {

?x foaf:interest ?d .

?y foaf:interest ?d .

FILTER ( ?x != ?y )

}

?x ?y

ex:moulin ex:lai

ex:lai ex:moulin

returns

(b) SELECT query form

CONSTRUCT {

_:c0 rdf:type foaf:Organization .

_:c0 foaf:member ?x, ?y .

}

WHERE {

?x foaf:interest ?d .

?y foaf:interest ?d .

FILTER ( ?x != ?y )

}

foaf:Organization ex:moulin ex:lai

rd
f:
ty
pe

foaf:member

foaf:member

rdf:type

fo
af
:m
em
be
r

fo
af
:m
em
be
r

returns

(c) CONSTRUCT query form

Figure 2.5. SPARQL examples

15



2 – Preliminaries

2.1.3 RDF and SPARQL Syntax

In this section we present a formal description of the syntax of the key elements of
RDF and SPARQL. A comprehensive description of the full syntax and semantics
of these languages, which are specified by W3C5 can be found in [56, 9] and [47]
for RDF syntax and semantics respectively, and in [75] for SPARQL syntax and
semantics.

The syntax of RDF and SPARQL is based on the following sets of symbols:

Definition 2.1 (Symbols). The following are infinite sets, pairwise disjoint:

• I : the set of IRIs

• B : the set of blank nodes

• L : the set of RDF literals

• V : the set of variables

Additionally, the set T = I ∪B ∪ L is the set of RDF terms. y

The elements of the set I are Internationalized Resource Identifiers as defined
in [33]. The blank nodes of the set B are also referred to as anonymous resources
or bnodes [56]; a blank node is neither an IRI, nor a literal, nor a variable; it has
a Node ID which is limited in scope to a serialization of a particular RDF Graph
(see definition 2.3). A blank node serves the purpose of representing resources
which cannot be named at present, and it is essentially equivalent to an existentially
quantified variable. Finally, the elements of the set L identify values such as numbers
and dates by means of lexical representations [56]. The set L is divided into two
disjoint subsets, containing respectively plain literals (strings combined with an
optional language tag, which are interpreted as plain text in a natural language)
and typed literals (strings combined with a datatype URI, interpreted as values of
that datatype).

The triple is the basic syntactic element of RDF. It corresponds to a simple
statement. A set of triples gives an RDF graph.

Definition 2.2 (RDF Triple). An RDF triple is a tuple

(s,p,o) ∈ (I ∪B)× I × (I ∪B ∪ L)

where s is the subject, p is the predicate, and o is the object. A ground RDF triple
is one with no blank nodes. y

5World Wide Web Consortium, http://www.w3.org/

16



2.1 – Semantic Web

An RDF triple has a graphical representation: s is represented by an ellipse, o is
represented by either an ellipse (when o ∈ I ∪ B) or a rectangle (when o ∈ L), and
p is represented by an arrow from s to o. Each graphical element (ellipse, rectangle,
and arrow) is labelled with the corresponding value of the tuple.

Definition 2.3 (RDF Graph). An RDF graph G is a set of RDF triples:

G ⊂ (I ∪B)× I × (I ∪B ∪ L)

Usually, the term(G) denotes the set of terms of G, that is the set of elements
of T that appear in G, and blank(G) denotes the set of blank nodes of G, that is
blank(G) = term(G)∩B. A ground RDF graph is one with blank(G) = ∅. Two RDF
graphs are equivalent if they differ only in the identifiers of their blank nodes. y

RDF graph equivalence is formally defined in [56, Graph Equivalence]6. The
graphical representation of the RDF triples of G is a directed graph as described in
section 2.1.1.1.

Definition 2.4 (RDF dataset). An RDF dataset is a set:

D =

G0,(u1,G1), . . . ,(un,Gn)


where n > 0, G0, . . . ,Gn are RDF graphs, u1, . . . ,un are distinct IRIs (ui /= uj for
all i /= j). G0 is referred to as default graph, and (ui,Gi) is referred to as named
graph. y

Definition 2.5 (Mapping). A mapping (or solution mapping) is a partial function

µ : V −→ T

whose domain dom(µ) ⊆ V is the set of variables where µ is defined, and T is the
set of RDF terms (see definition 2.1). y

Definition 2.6 (Filter constraint). Let T be the set of RDF terms (as defined in
2.1). A filter constraint is inductively defined as follows:

• the function r : 2T −→ {true,false} is a filter constraint: it takes a set of
RDF terms and returns a boolean value;

• if r is a filter constraint, then ¬r is a filter constraint;

• if r1,r2 are filter constraints, then r1 ∧ r2 is a filter constraint;

• if r1,r2 are filter constraints, then r1 ∨ r2 is a filter constraint.

6 http://www.w3.org/TR/rdf-concepts/#section-graph-equality

17



2 – Preliminaries

Given a mapping µ and a filter constraint r, the expression r(µ) indicates the eval-
uation of the filter constraint r over the mapping specified by µ. y

The simplest syntactic element of SPARQL is the triple pattern, which intuitively
corresponds to an RDF triple allowing variables in the subject/predicate/object
positions:

Definition 2.7 (SPARQL Triple Pattern). A SPARQL triple pattern is a tuple

t = (s′,p′,o′) ∈ (T ∪ V )× (I ∪ V )× (T ∪ V )

A ground triple pattern is a triple with no variables. Given a SPARQL triple pattern
t, var(t) usually denotes the set of variables appearing in t. y

Note that there are two relevant differences between a SPARQL triple pattern
(s′,p′,o′) and an RDF triple (s,p,o) (see definition 2.2): (i) s′ can be an RDF literal
whereas s cannot, and (ii) both s′, p′, and o′ can be variables whereas s, p and o
cannot.

The combinations of triple patterns yield more complex syntactic forms, which
are named SPARQL graph patterns:

Definition 2.8 (SPARQL graph pattern). A SPARQL graph pattern is inductively
defined as follows:

• a triple pattern t is a graph pattern;

• if γ1,γ2 are graph patterns, then (γ1 AND γ2) is a graph pattern;

• if γ1,γ2 are graph patterns, then (γ1 UNION γ2) is a graph pattern;

• if γ1,γ2 are graph patterns, then (γ1 OPTIONAL γ2) is a graph pattern;

• if γ is a graph pattern and r is a filter constraint (see definition 2.6) with
var(r) ⊆ var(γ), then (γ FILTER r) is a graph pattern.

Given a SPARQL graph pattern γ, var(γ) usually denotes the set of variables that
appear in γ. y

Definition 2.8 follows the algebraic approach of [71], which has been further
refined in [72, 1]. Note that there are some differences between definition 2.8 and
the W3C recommendation [75]. Firstly, the W3C recommendation does not use the
keyword AND but concatenates triple patterns and graph patterns enclosing them
in curly brackets: in case of triple patterns, the expression t1 AND t2 is written
{t1 t2}; in case of generic graph patterns, the expression γ1 AND γ2 is written
{γ1}{γ2}


(We will use both syntactic forms interchangeably). Secondly, the W3C

18



2.1 – Semantic Web

recommendation does not explicitly impose any restriction on the variables of filter
constraints used in graph patterns of the form (γ FILTER r), whereas definition 2.8
requires that var(r) ⊆ var(γ), that is r is a safe filter. This requirement corresponds
to a more general intuition of the meaning of filter constraints, and does not include
any limitations. In fact, [1] shows that non-safe filters in SPARQL are superfluous.
Thirdly, the W3C recommendation allows graph patterns with the following syntax:
(GRAPH x γ) where x ∈ I ∪ V is either an IRI or a variable, and γ is a graph
pattern. Such graphs are referred to as named graphs, and essentially enable selective
queries on RDF graphs from an RDF dataset (see definition 2.4). We omitted named
graphs from definition 2.8 because GpDL-formulae do not use them. Finally, the
W3C recommendation designates graph patterns according to table 2.1.

Table 2.1. Graph patterns designation

Designation Graph pattern
(ti is a triple pattern, and γi is a graph pattern)

Basic Graph Pattern
or Template Pattern

t1 AND t2 . . . AND tn

Group Graph Pattern γ1 AND γ2 . . . AND γn

Alternative Graph Pattern γ1 UNION γ2

Optional Graph Pattern γ1 OPTIONAL γ2

The basic graph pattern (or template pattern) can also be regarded as a set of
triple patterns β ⊂ (T ∪ V )× (I ∪ V )× (T ∪ V ), which is more evident when using
the notation with brackets: {t1,t2, . . . ,tn}. The basic graph pattern corresponding
to the empty set is also referred to as the empty graph pattern. The name template
pattern is usually adopted in the definition of a particular SPARQL query form
named CONSTRUCT , which allows the construction of an RDF graph based on a
template. In general, queries are defined as follows:

Definition 2.9 (SPARQL query). A SPARQL query is given by a tuple

(γ, D, Q)

where γ is a SPARQL graph pattern (see definition 2.8), D is an RDF dataset (see
definition 2.4), and Q is one of the following query forms:

• ASK

• SELECT X

19



2 – Preliminaries

• CONSTRUCT τ

where X ⊂ V is a set of variables such that x ∈ X → x ∈ var(γ), and τ is a
SPARQL template pattern (see table 2.1). y

Note that the W3C recommendation [75] defines a SPARQL query in terms of a
SPARQL algebra, an abstract intermediate language for the expression and analysis
of queries. An early description of SPARQL algebra can be found in [28]. The W3C
recommendation describes how to convert SPARQL graph patterns into SPARQL
algebra expressions. The translation is performed by the SPARQL interpreter when
evaluating a query.

2.1.4 Reasoning

A reasoner is a piece of software able to infer logical consequences from a set of ax-
ioms or asserted facts. In practice, a reasoner makes inferences either about classes
constituting an ontology or about individuals constituting a knowledge base. On-
tology classification arranges classes defined by logical expressions into a hierarchy.
This reasoning task is normally related to ontology development. Our approach
concerns the query answering with respect to ontology based information retrieval.
The Semantic Web requires high-performance storage and reasoning infrastructure
in order to match the demand of indexing structured data with the use of ontolo-
gies. The major challenge with building such infrastructures is the expressivity of
the underlying standards such as RDF(s) and OWL [54].

For the first case of reasoning (concept classification), we may use different avail-
able engines related to ontology languages of the Semantic Web like OWL and
RDF(s) [51]. Among the most popular are RacerPro, FaCT++ and Pellet. Pellet,
in particular, is an OWL DL reasoner based on the tableaux algorithm [5] devel-
oped for expressive Description Logics. Pellet parses OWL documents into triples
and separates them into TBox (axioms about classes), ABox (assertions about in-
dividuals) and RBox (axioms about properties), which are passed to the tableaux
based engine. Logic relations contained into the ontology and constituting classes,
individuals, properties allows to create new axioms.

An interesting feature of Pellet is its usability for ontology analysis and repair.
As explained in [67] OWL has two major dialects, OWL DL and OWL Full, with
OWL DL being a subset of OWL Full. All OWL knowledge bases are encoded
as RDF/XML graphs. OWL DL imposes a number of restrictions on RDF graphs,
some of which are substantial (e.g., that the set of class names and individual names
be disjoint) and some less so (that every item have a type triple). Ensuring that
an RDF/XML document meets all the restrictions is a relatively difficult task for
authors, and many existing OWL documents are nominally OWL Full, even though
their authors intended for them to be OWL DL. Pellet incorporates a number of

20



2.1 – Semantic Web

heuristics to detect DLizable OWL Full documents and repair them, i.e. making
them compliant with DL characteristics.

The second case of reasoning based on the structure of the ontology applies
the semantics rules of OWL to a knowledge base. This adds new assertions to
the knowledge base (the first case adds new axioms to the ontology). In [54] the
authors explain two principle strategies for rule-based inference, forward-chaining
and backward-chaining. Their approach is based on inferred closure and known as
materialization. Through the inferred closure, a knowledge base is extended with
all the facts inferred by the application of semantic rules.

21



2 – Preliminaries

2.2 Fundamentals on Description Logics

The languages of the Semantic Web are reinforced by logic formalisms. In this
section we will see some fundamentals of them. A logic is a formal language that
defines the syntax of the so called well-formed formulae (the set of statements that
one can make in that particular logic) and has a model theory, which unambiguously
specify the semantics of the well-formed formulae. Logic studies in general the
principles of valid inference and correct reasoning: a logic is not concerned with
establishing the truth or falsity of a statement, but only with consistently deducing
the truth of a statement from that of the others.

Description Logics (DL) are a family of knowledge representation formalisms
that allow for the construction of symbolic representations of an application domain
by formally defining individual objects, classes of objects with similar characteris-
tics, and relationships among them. Classes are usually arranged in class hierarchies
based on a subclass/superclass relationship (partial ordering). The use of Descrip-
tion Logics in knowledge representation systems can be traced back to the Kl-One
[90] and Classic [16]. See [3] for a comprehensive presentation of Description Log-
ics.

An application domain is formally defined by DL; the domain is given through
its terminology, which consists of a finite set of classes and roles (i.e. relations). The
terminology is usually referred to as TBox, and it represents the intentional knowl-
edge of the application domain. The TBox may also contain a finite set of axioms,
which specify additional concepts, properties of roles, or relations between concepts.
Individual objects are specified by assertions based on the definitions given in the
TBox. The set of assertions is usually referred to as ABox, and it defines the exten-
sional knowledge of the application domain. A TBox is usually considered stable and
does not change very often, whereas an ABox is usually considered contingent, and
therefore mutable. A TBox and a corresponding ABox are usually jointly referred
to as a knowledge base.

A set of constructors supplies the DL languages. Constructors combine the
basic classes and roles of the terminology into complex ones. A typical Description
Logic Knowledge Representation System contains a knowledge base, which is based
on a specific Description Logic language, and a set of reasoning services, which
are useful in various information processing applications, and which correspond to
the way humans understand and reason about the world. The objective of the
reasoning services is to ensure soundness (only valid relationships are identified),
completeness (all valid relationships are identified), and tractability (relationships
can be computed in a reasonable time). The set of constructors and the various kinds
of axioms determine the differences in the various Description Logic languages, and
affect not only their expressive power, but also the decidability and complexity of
the reasoning services.

22



2.2 – Fundamentals on Description Logics

2.2.1 Syntax and Semantics

The syntax of Description Logics languages is based on three pairwise disjoint sets:
the set of atomic concepts SAC , the set of atomic roles SAR, and the set of individuals
SInd. The symbols ⊤ (top) and ⊥ (bottom) represent the most general and the least
general concept, respectively. Concepts and roles built using constructors supported
by a DL language are called complex.

Example 2.1 (Concepts, roles, and individuals). Let’s consider two atomic con-
cepts, Person and Organization, and an atomic role member. Person(Moulin)

is an individual of type Person, and Organization(UTC) is an individual of type
Organization. The complex concept Professor can be defined as a Person related
to a Organization through the member role.

The URI http://xmlns.com/foaf/0.1/Person represents the concept Person
in the FOAF specification [19]. If the URI http://www.example.com/ClaudeMoulin
identifies Claude Moulin, then the RDF triple

ex:ClaudeMoulin rdf:type foaf:Person .

is equivalent to the Description Logic expressionPerson(ClaudeMoulin), asserting
that ClaudeMoulin is an individual belonging to the set identified by the atomic
concept Person. (Note that the rdf and foaf prefixes identify respectively the
RDF and FOAF vocabularies, and the ex prefix identifies the fictitious namespace
http://www.example.com/.) y

The semantics of a Description Logic language is given in terms of an interpre-
tation I.

Definition 2.10 (Interpretation). An interpretation I is defined as a tuple

I = (∆I ,(·)I)

where ∆I is a non-empty set called the domain of the interpretation, and (·)I is the
interpretation function [4]. y

The interpretation function (·)I is actually specified as a set of three functions
(in the following 2A denotes the powerset of the set A):

• (·)IAC : SAC −→ 2∆
I
is a function mapping atomic concepts to subsets of the

interpretation domain: ∀C ∈ SAC , (C)I ⊆ ∆I ;

• (·)IAR : SAR −→ 2∆
I×∆I

is a function mapping atomic roles to subsets of binary
relations over the interpretation domain: ∀R ∈ SAR, (R)I ⊆ ∆I ×∆I ;

• (·)IInd : SInd −→ ∆I is a function mapping individuals to elements of the
interpretation domain: ∀i ∈ SInd, (i)I ∈ ∆I .

23



2 – Preliminaries

The interpretation function is conveniently extended to the sets of complex con-
cepts and roles to define the semantics of the constructors allowed in the various DL
languages.

The TBox of a DL language contains a finite set of axioms which can intro-
duce new concepts and roles, assert subclass/superclass relationships, and assert
properties of roles (such as transitivity).

24



2.3 – P2P Systems

2.3 P2P Systems

P2P systems appeared on the Internet to support applications that harness the
resources of a large number of autonomous participants (called peers). In many
cases, these peers form self-organizing networks that are layered on top of conven-
tional Internet protocols and have no centralized structure. P2P systems are usually
characterized by the absence of a centralized authority that drives the system’s com-
ponents, and base their functioning on the self-organization of the entities that take
part in the system by playing a symmetrical role. For these reasons, the applications
best suited for P2P implementation are those where centralization is not possible,
relations are transient, and resources are highly distributed [74]. Another key as-
pect of P2P systems is the ability to provide inexpensive, but at the same time
scalable, fault tolerant and robust computing infrastructures. File sharing services
like Gnutella, are distributed systems where the contribution of many participants
with small amounts of disk space results in a very large distributed database. In the
SETI@home project 7 users volunteer their CPU resources, making up a large-scale
signal processing infrastructure to support the research of extraterrestrial life.

P2P and classical distributed computing are both concerned with enabling re-
source sharing within distributed communities. However, different base assumptions
have led to distinct requirements and technical directions [36]. P2P systems have
focused on resource sharing in environments characterized by potentially millions
of users, most with homogeneous desktop systems and low-bandwidth, intermittent
connections to the Internet. As such, the emphasis has been on global fault-tolerance
and massive scalability. In contrast, classical distributed systems have arisen from
collaboration between generally smaller, better-connected groups of users with dif-
ferent resources to share.

Despite these differences, the long-term evolution of classical distributed com-
puting and P2P seems likely to converge at least in some regards, as distributed
systems expand in scale and incorporate more transient services and resources, and
as P2P researchers consider a broader class of applications [36].

2.3.1 P2P history

P2P networking has divided research cycles. The traditional distributed computing
community views these young technologies as ”upstarts with little regard for, or
memory of, the past”; evidence supports this view in some cases. Others welcome
an opportunity to revisit past results, and to gain practical experience with large-
scale distributed algorithms. An early use of the term ”P2P computing” is in IBM’s
Systems Network Architecture documents over 25 years ago, but publicly came to

7Seti@Home Project. http://setiathome.ssl.berkeley.edu

25



2 – Preliminaries

fore with the rise and fall of Napster8 file sharing application in 1999.

2.3.1.1 P2P vs Client-Server Model

P2P systems can be contrasted with asymmetric client/server systems, in which a
server (usually a more powerful and better connected machine) runs for long periods
of time and delivers storage and computational resources to some number of clients.
As a side effect, the server becomes a performance and reliability bottleneck and
the undesirable features need to be mitigated with techniques such as replication,
load balancing, or request routing, and significant investments in high-end machines,
high-bandwidth connectivity, rack space and so forth. All of that, suggests that the
support of a centralized solution is a viable option provided in an economic incentive
or a business model that justifies capital and administrative expenses.

A natural evolution of this thinking is to include the clients’ resources in the
system, an approach that becomes increasingly attractive as the performance gap
between desktop and server machines narrows, and broadband networks dramat-
ically improve client connectivity. Thus, P2P systems evolve from client/server
systems by removing the asymmetry in roles: clients are also servers that allow
access to their resources, actively participating in the service supply. Work (be it
computation, or file sharing) is partitioned between all peers, so that a peer con-
sumes its own resources on behalf of others (acting as a server), while asking other
peers to do the same for its own benefit (acting as a client). As in the real world,
this cooperative model may break down if peers are not provided with incentives to
participate, which in successful stories like Napster or Gnutella [55] turned out to
be just the nature of the content being shared.

Another viewpoint from which one can describe these systems is the use of in-
termediaries. The Web (and client/server file systems such as NFS and AFS) uses
caches to reduce average latency and networking load, but these caches are typically
arranged statically. P2P systems partition work dynamically among cooperative
peers to achieve locality oriented load balancing. Content distribution systems such
as PAST [83] and Pasta [62] use demand-driven strategies to distribute data to peers
close in the network to that demand.

The classical distributed systems community would claim that many of these
ideas were present in the early work on fault tolerant systems in the 1970s. For
example the Xerox Network System’s name service, Grapevine [91], included many
traits mentioned here. Other systems that can be construed as P2P systems include
Net News (NNTP is certainly not client-server) and the Web’s Inter-cache protocol,
ICP. The Domain Name System also includes zone transfers and other mechanisms
that are not part of its normal client/server resolver behaviour.

8Napster. Napster media sharing system. http://www.napster.com/.

26



2.3 – P2P Systems

2.3.1.2 First generation: Napster

The Napster file sharing system started in 1999 allowing users to ”share” audio files
stored on their own hard drives. In Napster (see figure 2.6), peers stored locally
their collection of files, while Napster ran a central server storing only the index of
files available within the peer community. To retrieve a desired song, users issued
keyword-based search requests to this central server and obtained the IP address of
peers storing matching files. The user could then download the desired files directly
from one of these peers.

Figure 2.6. Napster, centralized architecture

Clearly, Napster did not display a ”pure” P2P architecture, as only the con-
tent storage and exchange were distributed among the peers, while file indexing and
lookup was on a central location administered by Napster (the company). However,
because it dramatically simplified the task of obtaining music on the Internet, Nap-
ster became popular, reaching nearly 50 Million users within the first year of service.
Over time, Napster’s centralized directory became both a severe bottleneck and a
single point of failure for legal, economic, and political attacks. Napster was eventu-
ally shut down by court order for helping users infringe copyright. Napster’s success
was attributable to online music sharing being a ”killer application”. Moreover, it
demonstrated the potential in harnessing client resources to satisfy their need for a
service. With the demise of Napster, there arose a desire within the music-sharing
community for a fully decentralized service that would not be susceptible to a similar

27



2 – Preliminaries

legal attack. The projects that rose to the challenge stimulated important technical
developments in distributed object location and routing, distributed searching, and
content dissemination.

2.3.1.3 Second generation: Gnutella, Freenet, Kazaa

Gnutella is a distributed search protocol adopted by several file-sharing applications,
which dispensed with the centralized directory and distributes also the file indexes
and lookup. Gnutella peers locate content sources flooding their neighbourhood
with search queries messages (see figure 2.7). Despite measures to limit and restrict
flooding, several studies and user experience found that sometimes the volume of
queries and control of traffic caused excessive network load, decreasing the chance
of satisfying a given query, as well as the amount of bandwidth left for actual file
transfers.

Figure 2.7. Gnutella, fully decentralized architecture

Other systems for content location, including Freenet [26], added mechanisms
to route requests to the node where the content is likely to be, in a best effort
partitioning of the networks’ content. Systems for file sharing such as Kazaa [57],
as well as recent Gnutella evolutions, added structure to P2P file-sharing networks
by dynamically electing nodes to become super-peers, caching and serving common
queries or content.

28



2.3 – P2P Systems

2.3.1.4 Third generation: efficient routing substrates

Although the range of applications for P2P techniques remained limited, by the
end of 2001 a common requirement had emerged. In order for each peer to make a
useful contribution to the global service, a reliable way of partitioning workload and
addressing the responsible nodes was needed. Further, the emphasis on scalability,
and the corresponding observation that in global-scale system peers will be joining,
failing, and leaving continually, required these functions to be performed with the
knowledge of only a fraction of the global state on each peer, maintained with
only a low communication overhead in the underlying network. These observations
inspired a generation of P2P routing substrates that provided a distributed message
passing, object or key location service. The most popular approaches adopt a virtual
address space, in which nodes are assigned a unique pseudo-random identifier that
determines their position in the space (see figure 2.8). Messages are then routed
toward keys in the same address space, and are delivered eventually to the node
numerically closest. According to the way in which applications use this service, a
message destined for a given key represents a request to provide a given service with
respect to that key. As requests’ keys must be mapped on to the key space pseudo-
randomly, these platforms offer effective partitioning of the work between peers.
Different variants of this basic approach differ as to the structure of information on
nodes and the way messages (or sometimes requests for routing information) are
passed between peers.

2.3.2 Unstructured and Structured P2P Networks

Unstructured P2P Networks (UPNs) appeared earlier to bring together edge re-
sources. Filesharing applications are predominant in this context, where Gnutella
[55] embodies UPNs. They are called unstructured because links between nodes
are established arbitrarily. Nevertheless, UPNs suffer of two main drawbacks: the
lack of query correctness and the overhead on communication. The former can be
explained as follows: suppose there is a file in the UPN and a user wants to retrieve
it. If the file is too far from the user, it might not to be found by the user query.
The latter occurs because communication in UPN is performed mainly by flooding
and causes a high amount of signalling traffic in the network. Hence, such networks
typically have very poor search efficiency.

Structured P2P Networks (SPNs), such as Pastry [82], appeared to overcome the
problems appeared in UPNs. SPNs are able to guarantee query correctness, a key
property for modern applications, as well as routing and time efficiency. SPNs are
also broadly called distributed hash tables (DHTs) because most of them associate
the data owner node by means of a consistent hashing, in an analogous way to that

29



2 – Preliminaries

Figure 2.8. Structured architecture

of traditional hash table’s assignment of keys to a bucket. SPNs provide exact-
match queries with correctness and applications can use the API put(key, value) /
value←− get(key) to access to the content.

2.3.3 Pastry

Pastry9 is an overlay and routing network for the implementation of a DHT. The
key-value pairs are stored in a redundant P2P network of connected Internet hosts.
A Pastry network is characterized by its redundant and decentralized nature; in this
way there is no single point of failure and any single node can leave the network at
any time without warning and with little or no chance of data loss. The protocol is
also capable of using a routing metric supplied by an outside program, such as ping
or traceroute, to determine the best routes to store in its routing table.

Each node in the Pastry overlay is assigned a 128-bit node identifier (nodeId).
The nodeId is used to determine the node’s position in a hypothetical circular nodeId
space, which ranges from 0 to 2128 - 1. The nodeId is assigned randomly when a
node joins the system. In general it is assumed that nodeIds are a sequence of digits
with base 16 and are generated such that the resulting set of nodeIds is uniformly
distributed in the 128-bit nodeId space (see figure 2.9).

9http://research.microsoft.com/en-us/um/people/antr/pastry/

30



2.3 – P2P Systems

Figure 2.9. PASTRY nodeId distribution

Often, it is possible to generate nodeIds, e.g., by computing a hash function of the
node’s public key or its IP address. As a result of this assignment of nodeIds, with
high probability, nodes with adjacent nodeIds are diverse in geography, ownership,
jurisdiction, network attachment, etc.

The major function of Pastry nodes is to route messages (for instance to store
an entry within the DHT) from one node to others. A node efficiently routes a
message identified by a key to the node with a nodeId that is numerically closest
to the key, among all currently live Pastry nodes. The expected number of routing
steps is O(log N ), where N is the number of Pastry nodes in the network. In each
routing step, a node normally forwards the message to a node whose nodeId shares
with the key a prefix that is at least one digit (or 4 bits) longer than the prefix that
the key shares with the present node’s id. If no such node is known, the message
is forwarded to a node whose nodeId shares a prefix with the key as long as the
current node, but is numerically closer to the key than the present node’s id. To
support this routing procedure, each node maintains some routing state. Pastry
takes into account network locality; it seeks to minimize the distance messages
travel, according to a scalar proximity metric like the number of IP routing hops.
Each Pastry node keeps track of its immediate neighbours in the nodeId space, and
notifies applications of new node arrivals, node failures and recoveries. Each Pastry

31



2 – Preliminaries

node knows a certain set of other live nodes in the P2P network, through a routing
table coupling nodeIds to the associated node’s IP addresses of the known nodes.

To join the network the protocol requires a single node to bootstrap by sup-
plying the IP address of a peer already in the network, than inform other nodes
of its presence. To do so the new node could have an own IP list of potential
live nodes. Otherwise, the information about neighbours can be obtained through
outside channels such as well known IP addresses listed publicly on the Web. For
instance, let’s assume that a new node with nodeId X asks the already existing node
with nodeID A to join the network. Node X then asks A to route a ’join’ message
with the key equal to X. Like any message, Pastry routes the join message to the
existing node Z whose id is numerically closest to X. In response to receiving the
’join’ request, nodes A, Z and all nodes encountered on the path from A to Z send
their routing tables to X. The new node X then initializes its own routing table
considering closest existing nodeId. Finally, it informs any nodes that need to be
aware of its arrival. Pastry uses an optimistic approach to controlling concurrent
node arrivals and departures. Since the arrival/departure of a node affects only a
small number of existing nodes in the system, contention is rare and an optimistic
approach is appropriate. Briefly, whenever a node A provides state information to
a node B, it attaches a timestamp to the message. B adjusts its own state based
on this information and eventually sends an update message to A (e.g., notifying
A of its arrival). B attaches the original timestamp, which allows A to check if its
state has since changed. In the event that its state has changed, it responds with
its updated state and B restarts its operation.

The notion of network proximity is based on a scalar proximity metric, such as
the number of IP routing hops or geographic distance. A node with a lower distance
value is assumed to be more desirable. A Pastry node, to determine the ’distance’
of a node with a given IP address to itself, is expected to implement this function
depending on its choice of a proximity metric, using network services like traceroute
or Internet subnet maps, and appropriate caching and approximation techniques to
minimize overhead.

The efficient Pastry routing scheme allows to develop an Internet-based, P2P
global storage utility called PAST [32] which aims to provide strong persistence,
high availability, scalability and security. A storage utility like PAST is attractive
for several reasons: i) it exploits the multitude and diversity (in geography, owner-
ship, administration, jurisdiction, etc.) of nodes in the Internet to achieve strong
persistence and high availability; this obviates the need for physical transport of
storage media to protect backup and archival data; ii) it renders unnecessary the
explicit mirroring of shared data for high availability and throughput; iii) it also
facilitates the sharing of storage and bandwidth, thus permitting a group of nodes
to jointly store or publish content that exceeds the capacity of any individual node.

32



2.3 – P2P Systems

A storage management scheme in PAST ensures that the global storage utiliza-
tion in the system can approach 100%, despite the lack of centralized control and
widely differing file sizes and storage node capacities. In a decentralized storage sys-
tem where nodes are not trusted, an additional mechanism is required that ensures
a balance of storage supply and demand.

File persistence in PAST is assured because the file is stored on several storage
nodes. When a file is inserted in PAST, Pastry routes the file to the nodes k whose
node identifiers are numerically closest to the 128 most significant bits of the file
identifier (key). Each of these k nodes then stores a copy of the file. The replication
factor k depends on the availability and persistence requirements of the file and may
vary between files. A lookup request for a file is routed towards the live node with
a nodeId that is numerically closest to the requested key.

This procedure ensures that (1) a file remains available as long as one of the
k nodes that store the file is alive and reachable via the Internet; (2) with high
probability, the set of nodes that store the file is diverse in geographic location, ad-
ministration, ownership, network connectivity, rule of law, etc.; and, (3) the number
of files assigned to each node is roughly balanced.

33



2 – Preliminaries

34



Chapter 3

Related Work

This chapter introduces the scientific and technological background of our research,
which spans the areas of Semantic Web and Distributed Index. The chapter reports
a discussion on related work. It concludes with the analyses of the requirements and
the fundamental choices made by the author to guide the implementation.

3.1 Semantic Desktop

In [88], the idea of Semantic Desktop is described as follows: A Semantic Desktop
is a device in which an individual stores all her digital information like documents,
multimedia and messages. These are interpreted as Semantic Web resources, each
is identified by a Uniform Resource Identifier (URI) and all data is accessible and
queryable as RDF graph. Resources from the web can be stored and authored con-
tent can be shared with others. Ontologies allow the user to express personal mental
models and form the semantic glue interconnecting information and systems. Ap-
plications respect this and store, read and communicate via ontologies and Semantic
Web protocols. The Semantic Desktop is an enlarged supplement to the user’s mem-
ory.

Many research projects are attempting to merge the focal parts of Semantic
Web into desktop computing, P2P and Social Networking. The Gnowsis project
[87][89] deals with the details of integrating desktop data sources into a unified
RDF graph and identifies resources with URIs. The main idea was to enhance
existing desktop applications and the desktop operating system with Semantic Web
features. Whenever a user writes a document, reads e-mails, or browses the web,
a terminology addressing the same people, projects, places, and organizations is
involved. The terminology grows out of the interests and the tasks of the user.
Gnowsis was aimed to be combined with web 2.0 philosophy and semantic web
technologies as a useful basis for future semantic desktops but not as an integrated

35



3 – Related Work

web system for widespread use among internet communities.

Other projects focus on the issue of data integration, aggregating data obtained
from the web. In the web services world, the SECO project [44] aims at integrating
web sources via an infrastructure that lets agents uniformly access data that is
potentially scattered across the web. Using a crawler, it collects the RDF data
available in files. RDF repositories are used as sources for data. Integration tasks
over the various data sources, such as object consolidation and schema mapping,
are carried out using a reasoning engine and are encapsulated in mediators to which
software agents can pose queries using a remote query interface. SECO includes a
user interface component that emits HTML, which allows human users to browse the
integrated data set. To create the user interface, a portion of the whole represented
data set is considered and used to generate the final page. The structure of the pages
of the site is created using a query, the results of the query are transformed to HTML,
giving three fundamental operations: a list view, keyword search functionality, and
a page containing all available statements of an instance.

3.2 Distributed Systems

Nowadays there are more tools than ever to help harness unused computing power
in hundreds of personal computers. Traditionally, three categories of ”distributed”
computing existed: Cluster computing, similar machines (generally servers of similar
power and configuration) are joined to form a virtual machine. Linux clusters are
good examples; Peer to peer, many desktop computers are linked to aggregate pro-
cessing power. The distinguishing characteristic is the machine itself, which almost
exclusively is a low-power client PC. Often, the link is via Internet; Distributed com-
puting, increasingly known as grid computing, this approach connects a wide variety
of computer types and computing resources, such as storage area networks, to create
vast ”virtual” reservoirs of computers to serve geographically separated users.

The traditional client-server internet model gives some ground to P2P network-
ing, where all network participants are approximately equal. The primary advantage
of P2P networks is that large numbers of people share the burden of providing com-
puting resources (processor time and disk space), administration effort, creativity
and legal liability. It is relatively easy to create a community of users in such an
environment and it is harder for opponents of a P2P service to bring it down.

Distributed Hash Tables (DHT) are considered a key technology in P2P applica-
tions as a consequence of their robustness and scalability. Several projects [25][81],
as well as popular file sharing applications make use of DHTs in order to distribute
the data over a large number of peers, that contribute storage to a community of
users. In the last years, the research and development in the P2P field has been
considerable. Napster, Gnutella2, Edonkey2K, Bit Torrent, Kademlia [60] are only

36



3.3 – Distributed Index

a few examples of consolidated protocols/architectures. The use of a such infras-
tructure in general is justified by it desirable features for P2P systems, such as
resistance to the censorship, decentralization, scalability, security, etc. To distribute
data among a thousand or a million of peers not only involves a huge amount of
information, but also confidence in a robust system that is free of restriction from a
central authority. This enables virtual communities to self-organize and introduce
incentives as a resource for sharing and cooperation. One can therefore argue that
what is missing from today’s P2P systems should be seen both as a goal and a means
for self-organized virtual communities to be built and fostered.

Between 2001 and 2002, almost simultaneously several architectures for DHT
were born, such as CAN [79] , Chord [96] , Pastry [81], Kademlia [60], and others.

3.3 Distributed Index

Whenever we think of distributed systems, we have to have think also about the way
to catalogue the information. During the last few years there has been a growth in
the number of distributed indexes for P2P networks, and a closer connection with
the ontology field.

In SA Net [86], an agent-based system achieves its semantic richness through the
use of explicit ontologies to represent resources. SA Net enhances the DHT based
resource distribution scheme by using a unique identifier assigned to each ontology
as a key to locate the overlay node responsible for maintaining the resource index
associated with the underlying ontology. In other words, the ontology-based hashing
scheme utilizes ontologies, instead of resource names, as the hash input to generate
the key necessary to distribute the resource among overlay nodes.

The SCORE project [93] provides classification and terminological basis for con-
textual reasoning on metadata. Metadata are divided into two types: syntactic
metadata and semantic metadata. Syntactic metadata describe non-contextual in-
formation about content, e.g. language, length, date, audio bit-rate, format, etc.
Such metadata offer no insight about the content. Semantic metadata describe
domain-specific information about content.

The PAGE [101] (Put And Get Everywhere) project consists of a peer to peer
infrastructure for distributed RDF storing and retrieval. It starts from YARS [45]
, a solution that defines an optimized index structure for fast retrieval of RDF
statements. PAGE implements YARS index structure that indexes resources using
RDF encoding called quad (spoc), where s is the subject, p the predicate, o the
object and c is the context. The index is achieved creating keys becoming from the
combination of quad elements.

RDFGrowth algorithm [99] introduces a scenario of a peer to peer network where

37



3 – Related Work

each peer has a local RDF database and is interested in growing its internal knowl-
edge by discovering and importing it from other peers in a group. It is important to
consider this kind of approach in order to define a mechanism of queries based on
SPARQL formalism. That type of queries requires an access to an RDF knowledge
base. The problem is how to distribute a centralized knowledge base on different
nodes in order to satisfy a query by accessing only one node.

3.4 Semantic Indexing

Atlas [53] is a P2P system for storing, updating and querying RDF(S) data and
RDFS ontologies. It is part of the OntoGrid1 project, where it has been used as a
distributed repository for RDF(S) metadata describing Grid services and resources.
Atlas focuses on E-science data repositories semantically annotated with RDF. The
challenge is the development of efficient indexing techniques and relational-style
statistics-based query optimization. Existing RDF stores have excellent perfor-
mance, but lack when used in wide area networks applications such as content-
sharing, Web(Grid service registries, distributed digital libraries, and social net-
works. Strategies for RDF query processing are based on two kinds of queries: i)
one-time queries, standard queries such as those asked in a typical RDF store and
the answer retrieved only once after the query is executed; ii) continuous queries,
long standing queries that return a response every time a relevant update is exe-
cuted. In the Atlas system, the metadata provider supplies resource descriptions by
RDF(S) data. The metadata consumer wants to discover resources by submitting
SPARQL queries to the system. To store RDF(S) data, it is necessary to submit it
to the system in the form of an RDF(S) document. The document is decomposed
into a collection of RDF triples and triple-indexing is performed. Each triple, of the
form (subject, predicate, object) is stored in the system three times, once with the
subject as the key, once for the predicate and one for the object. Each node of the
P2P network stores the triples it receives in its local database (based on SQLite2

). For answering a query, the node that poses the query is responsible for parsing
it and producing an internal SPARQL representation. The query is evaluated by a
chain of nodes. Intermediate results flow through the nodes of the chain and finally
the last node in the chain delivers the result back to the node that submitted the
query.

1http://www.ontogrid.net/
2http://www.sqlite.org

38



3.5 – Discussion of Related Work

3.5 Discussion of Related Work

Long time ago, Vannevar Bush, the director of Office of Scientific Research and
Development of United states, wrote an article in The Atlantic Monthly Journal ti-
tled ”As we may think” [21] , describing the idea of an hypertextual machine called
Memex, a kind of electronic desktop equipped with a microfilm storage memory,
allowing one to save pages of books and documents, play them and associate with
each other to make knowledge more accessible. The essay predicted many kinds
of technologies invented after its publication. Progress in Semantic Web, P2P and
natural language processing has resulted in new forms of collaboration and social
semantic information spaces. We are interested in investigating what the scientific
community has proposed so far and in innovating the processes of semantic indexing
in distributed systems with respect to P2P networks where the index is scattered
among a DHT. We investigate semantic indexing according to domain specific on-
tologies and aim at providing the user with specific and easy-to-use tools for browsing
ontologies for choosing significant elements for index keys. In order to publish and
retrieve the knowledge, it is necessary to use complex reasoning and inference on
the semantics of the published information. For creating a network of users in the
sense of a social network, it is necessary to create a platform similar to a semantic
desktop that is equipped with a set of tools at a user’s disposal. Even Tim Berners
Lee did not really envision the World Wide Web as a hypertext delivery tool, but
as a tool to make people collaborate [31]. Our system deals with technologies that
combine P2P networks, semantic indexing and domain specific retrieval systems.
In recent ONTOSE conferences (International Workshop on Ontology, Conceptual-
ization and Epistemology for Software and System Engineering) a lot of attention
has been payed on this topic. Progress in Semantic Web, peer to peer networks
and natural language processing, leads to new forms of collaboration and new social
semantic information spaces, including the following:

AgentSeeker [68] is a multi-agent search engine for managing company knowl-
edge bases. An ontology agent is devoted to managing the enterprise domain in a
semantic way. The goal is to make document retrieval a more intelligent process,
finding texts which are semantically bound to the user’s query. The core behaviour
of AgentSeeker is to parse text files and to keep a database for storing extracted
information. Every record includes the URIs of the ontologies supported and a mea-
sure of the affinity, in terms of percentages of words of the document that are also
contained in the ontology. AgentSeeker has only the textual content available be-
cause the authors’ opinion is that the tagging of the resources becomes complicated
due to the impossibility of modifying a file or difficulty in manually cataloguing
thousands of documents. In case of specific domains, which AgentSeeker considers,
it is not prohibitive to think of manually cataloguing personal resources if specific
tools are provided. It is not necessary to modify the file content because a semantic

39



3 – Related Work

description can be associated with the file. In our approach we provide such tool
that associates a semantic description to any kind of document. As stated in [80]
, ontologies allow adding semantics to data so that different software components
can share information in a homogeneous way. Furthermore, logic can be used in
conjunction with such formal representations for reasoning about information and
facts represented as ontologies. We also take this in consideration in our description
of the expansion of the system.

In the field of distributed knowledge management, SA Net [86], an agent-based
system, achieves its semantic richness through the use of explicit ontologies to rep-
resent resources. SA Net further enhances the DHT based resource distribution
scheme by using a unique identifier assigned to each ontology as a key to locate
the overlay node responsible for maintaining the resource index associated with the
underlying ontology. In other words, the ontology-based hashing scheme utilizes
ontologies instead of resource names as the hash input to generate the key necessary
to distribute the resource among overlay nodes. In our approach we give the same
responsibility to all nodes of the network. We have a slightly different meaning of
semantic indexing in that we do not directly attach resources to ontologies but create
keys whose content refer to ontologies. In this way there is a symmetric approach
for keys creation in both publishing and retrieving resources in the DHT.

The SCORE project [93] provides classification and terminological basis for con-
textual reasoning on metadata. Metadata are divided into two types syntactic meta-
data and semantic metadata. Syntactic metadata describe non-contextual informa-
tion about content, e.g. language, length, date, audio bit-rate, format, etc. Such
metadata offer no insight about the content. Semantic metadata describe domain-
specific information about content. We are of the opinion that meta-data are not
sufficient for describing resources and allowing some reasoning upon them. We do
not intend to extract or use metadata from different structured information sources.

RDFGrowth algorithm [99] introduces a scenario of a peer to peer network where
each peer has a local RDF database and is interested in growing its internal knowl-
edge by discovering and importing it from other peers in a group. It is important to
consider this kind of approach in order to define a mechanism of queries based on
SPARQL formalism. That type of queries requires an access to an RDF knowledge
base. The problem is how to distribute a centralized knowledge base on different
nodes in order to satisfy a query by accessing only one node. In our scenario the
DHT stores the distributed knowledge base. The process starts by browsing several
ontologies that a user can index or search for resources. The system is building
indexing keys in the background. The types of allowed requests determine the types
of indexing keys and routing algorithms. In a centralized case, a compound query
is an investigation on a knowledge base (looking for the triples which suit the query
in RDF bases). In our case we have to face issues of a distributed knowledge base.
A direct query of the whole knowledge base is impossible.

40



3.5 – Discussion of Related Work

Our work aims at demonstrating the benefit of a semantic indexing engine ex-
ploited by a set of tools available for a community of users located in different places.
To create a community of users means to tackle the topic of distributed systems.
The first requirement is to have systems independent from any central point of ag-
gregation. Among distributed systems, P2P architecture brings most advantages,
among them decentralization, scalability, fault tolerance. It is mandatory to have an
efficient distributed data structure to efficiently store and retrieve elements from a
huge amount of information; the evident efficiency of DHTs relies on the number of
messages exchanged to route a query to its destination. The order of magnitude of
this number is O(log(N)), where N is the total number of nodes. In the present work,
the low-level layer of P2P applications is built on FreePastry (see 2.3.3 for details),
the open-source implementation of Pastry, whose significance is guaranteed by the
support provided by the community of users regularly improving and amending it;
its features allow for adapting the network to the specific needs of users. We do
not need to deduce new metadata from different structured information, but sim-
ply to create an index whose content refers to ontologies. However some reasoning
elements have to be taken into account.

From a user’s point of view, it is necessary to access a set of tools that provide an
intuitive interaction. The development of Gnowsis started with enhancing desktop
applications with the features of Semantic Web, but only standalone applications
were considered. Considering the web 2.0 approach and using semantic web tech-
nologies, we have created an integrated web system, similar to a common desktop,
for a large use among internet communities. As experienced in the SECO project,
many RDF-compliant heterogeneous data sources are queried and depicted to the
user via ad-hoc web user interfaces generation. Our purpose is not to aggregate
data obtained generally from the web but from a community allowing to limit the
context of data and to ensure better adequacy for research goals and results.

Using ontologies in distributed systems like P2P networks, is regarded favourably
by the scientific community. In 2002, the Edutella project [65] handled by Sun Mi-
crosystems, made a first approach for the association of semantics to educational
content through an open source infrastructure based on RDF metadata for the in-
teroperation between different schemes (IEEE/LOM, IMS Learning Design3 , ADL
SCORM), and performed a mapping among them. The SWAP project [34] , man-
aged by the University of Karlsruhe, pays special attention to the topics related to
Semantic Web. Its aim is to allow computers to actually comprehend the meaning
of its processed data. Using the model of ontologies, the project allows to develop a
technology in the area of knowledge management and P2P. Complex structures can
be easily encoded in a set of RDF triples. In [101] it is argued that RDF should be-
come the bases of the Semantic Web. Nevertheless, RDF is not enough; it does not

3http://www.imsglobal.org/learningdesign/index.html

41



3 – Related Work

supply sufficient expressive power to represent the whole knowledge schema. DHT-
based overlay systems offer an interesting alternative to existing information system
architectures. We propose to express the semantic classification through concepts
articulated by ontologies that describe the specific domain and to formulate such
expression by the OWL formalism.

3.6 Requirements and choices

In P2P networks, resources are generally stored and indexed in a distributed hash
table (DHT [58][79][82]), and in personal memory, resources should be stored using
the same kind of index. A P2P architecture avoids both physical and semantic
bottlenecks that limit information and knowledge exchange [95]. The success of such
networks using semantics was considered challenging in [30]. Using the DHT, overlay
nodes can be identified deterministically and in a finite number of steps (normally
the complexity is log(n) where n is the number of nodes of the overlay), thereby
reducing considerably the search overhead due to communication and routing. One
critical limitation of DHT-based structure, with respect to resource discovery, is its
lack of support for location-based queries that go beyond perfect matching. This
has a strong influence on the building of index keys. Resources are semantically
indexed using ontologies. We follow the W3C recommendations and use OWL as the
ontology representation language. A resource description is a set of assertions that
may involve several ontologies. In particular, a resource is considered an instance
of one or more concepts that can be found in some ontologies. For example, in
e-learning context, a resource may be considered a learning object. An entry key
of the index is based on the assertions that denote a resource. Ontologies used for
indexing must be stored in the shared memory [42][40] and later retrieved.

42



Chapter 4

Research

This chapter presents theoretical results of the study. It gives definitions of rele-
vant concepts and explains relations between them. Aspects of research concerning
Semantic Indexing, Resource Description, Creation of keys, Use of Ontologies and
Community are explored and shortcomings in the state of the art approaches in the
above-mentioned fields are addressed. An attempt is made at contributing to the
open issues.

4.1 Semantic Indexing

4.1.1 Introduction

The creation and sharing of documents is a daily concern for several categories of
community users. We consider people belonging to loose communities and relying
on a P2P network. The nature of communities is not relevant because the solution
we propose is generic. Members of a community usually manage their private re-
sources and agree to share a part of them with the other members. For that they
use private and shared memory, respectively. Users need to describe the resources.
It seems more convenient to use the same system of description for the resources
stored in the two types of memories. The advantage is that users can retrieve a
resource from the network and/or the private storage thanks to a common search
system. Considering the P2P nature of communities it is necessary to create an
index of managed resources. Indexing is the process of creating or updating an in-
dex. Starting with a list of resources allows one to create a correspondence between
identifiers and resources. There are many examples of indexes. E.g. the index of
a book is the association between book parts (identifiers) and page numbers (re-
sources). We generally consider two kinds of models for indexing resources: boolean
[85] and vectorial [84]. As a boolean model, the index of documents is an inverse file

43



4 – Research

which associates to each keyword of the indexing system the set of documents that
contain the keyword. In a vectorial model, a document is represented by a vector
whose dimensions are associated to the keywords occurring in the document and the
coordinates correspond to the weights attached to the keywords in the document
thanks to a specific calculus. A request is also a vector of the same nature. The
answer is composed of a list of documents presenting similarities with the request
thanks to a specific measure [14] [92] based on coordinates of the vector.

In centralized indexing [76] [102] both models are available. However, in the case
of P2P networks, the index must be distributed among the peers and the number of
queries sent to the system when searching for resources should be minimized, because
they are time consuming. Due to these constraints, the model of a distributed index
is necessarily boolean.

Documents may have different types (text, audio, video, archive, etc.) and dif-
ferent storing formats. To share and retrieve resources, it is necessary to give them a
proper description. The traditional file sharing diffusion is based on the title of the
resource. We cannot consider the title as the right way to identify a resource because
in our case, resources are created locally and their meaning is not universally known
by their titles. So it is necessary to find another way for describing resources.

For that, we can consider some sort of tagging which consists of associating
keywords to resources. In many cases, keywords make descriptions ambiguous, as
in the following example:

the resource is entitled An interesting overview of Java. The keyword Java is
used for description.

What does it mean? Does Java refer to the island of Indonesia or does it refer
to the programming language developed at Sun Microsystems? Without taking into
account the contextual elements, the question has multiple answers.

This solution is not satisfactory because we cannot permit that the system based
on this description type accepts too many ambiguous cases.

To deal with this difficulty, we propose a very fine mechanism of description of
the resources. We consider semantic descriptions built from the elements extracted
from ontologies. The mechanism of description and the semantic indexing technique
are parts of our system (hereafter with the expression ”the system” or ”our system”
we refer to the theoretical model described in this work and implemented in our
prototype).

The Semantic Web proposes standards for allowing machines to understand the
meaning (or ”semantics”) of information. It defines a set of well supported languages
such as RDF, RDFS, OWL, SPARQL, and related technologies. In our solution,
semantic information strictly related to a resource is written in a language based on
RDF and is included in its description. We have chosen to use domain ontologies
written in RDFS or OWL. We do not consider the design of ontologies but we assume
to find well structured and ready to use ontologies. Manual semantic indexing is

44



4.1 – Semantic Indexing

possible only with named concepts with clear descriptions.
With respect to the previous example, the choice of the right ontology allows to

know if Java can be attached to a geographical concept or to a computer science
one.

Definition 4.1. (Semantic Description)
We call Semantic Description the representation of a resource that uses ontolog-

ical elements.

In our case, a Semantic Description is manually constructed but a part of the
Description could be done automatically with applicable software. In figure 4.1 we
can see that the system uses a formal representation of the resource, based on user
input and available ontologies. The description is prerequisite for indexing.

Definition 4.2. (Semantic Indexing)
We call Semantic Indexing the association of a Semantic Description to a re-

source.

The figure 4.1 shows the meaning of an association. The same description may
be used to identify several resources.

Semantic indexing is defined with respect to the possible queries that the system
can answer. A query provided by users is a logical expression combining semantic
descriptions and boolean operators (described in section 4.1.4.9). The system an-
swers with the list of documents that satisfy the logical expression. The semantic
descriptions proposed by the user are supposed to be contained in the index.

45



4 – Research

Figure 4.1. Semantic Description and Indexing

4.1.2 Approach

4.1.2.1 Non-semantic approach

Folksonomies are defined as Internet based collaborative systems for non hierarchical
and spontaneous categorization and organization of web resources through shared
tags[98] [23]. Users can freely add descriptive keywords to resources. A system
can understand the textual content trying to navigate through the system of labels
assigned to different resources by the users that participate in a folksonomy.

In folksonomies, the query system consists in simple navigation between regis-
tered labels and accessing correspondingly tagged pages.

In most cases the user produces a query containing a sequence of keywords
and expressions combined with boolean operators (AND, OR, NOT). The system
answers by searching within an index for resources satisfying the logical expression.
However, this approach does not take into account synonyms or contextual elements.

46



4.1 – Semantic Indexing

4.1.2.2 Semantic approach with free text input

In ontology engineering, it is necessary to answer questions related to modeling
practice. Among them we find: Who does what, when and where?, What are the
parts of what?, What is an object made of? [37].

In query engineering, studies have to be managed in order to define the types
of queries a user can produce. Common queries may have a general purpose like:
What are the documents about the subject Medieval Italy?, orWhat are the documents
published by a specific author in 2008? Some queries seem general but infact refer
to a specific domain, e.g. Theory of Languages, such as: What are the documents
written by Chomsky? (Chomsky refers to Theory of Languages).

Two queries may be dependent. For example, in the field of programming lan-
guages it is usual to refer to concepts concerning data structures like stack, list or
tree. Queries like What are the resources that concern stack? and What are the re-
sources that concern data structures? are not independent when a relation between
the concepts of stack and data structure exists in the ontology chosen to describe
the domain to programming languages. In some cases, a resource can be described
in different ways, so the same resource can be retrieved by several different queries.

Even if we consider semantic descriptions of resources, there are some different
ways a user can address a query to a system. Moreover user interface of the system
must be designed in line with the query model accepted by the system. Let’s assume
a system that accepts domain ontologies. We may consider different ways the user
can input a query in a system:

• the user produces a query written in natural language: e.g. What are the
resources that concern stack?

• the user produces a query containing a sequence of keywords

These two cases require textual analysis of the query in order to identify the
concepts and relations of an ontology that can be associated to the content of the
query [63].

The necessary matching between such query content and ontology content is
based on text analysis techniques such as those supplied by Apache Lucene [46].
Sometimes a query analyser is able to detect incomplete formulation and may begin
a dialogue [78] with the user for adding missing elements.

This approach has some limitations and is not suitable for our aims. User input
could produce noise due to typing errors. The free use of keywords could bring
ambiguity or imply the need for very sophisticated text analysis.

We propose a third approach based on description patterns 4.5. The user does
not formulate the query herself but is guided by a system for building it. The system
creates in the background the real query in a specific internal language and sends it
to the network.

47



4 – Research

4.1.2.3 Our Semantic Approach

In our system we do not introduce any specific query language. Based on the
concept of pattern, the system provides the user with a method for creating resource
descriptions in an interactive way. The description is based on potential queries that
the system can answer. Hereafter we denote by the word description the semantic
description that a user gives to resources. We say ”the user thinks of the query”,
meaning that when the user creates a description, she thinks about possible queries
that the system can answer. Moreover, when we say ”the user builds a query” we
mean that the user creates a query to get an answer from the system. In fact, the
description is the information that is useful in the system for indexing resources, for
storing and for retrieval. The user thinks of the query in ”natural language”. The
system, considering the input from the user, applies a mechanism of reformulation
of the query based on the available ontologies.

The user must first identify the type or category of resources she is looking for.
This decision is made choosing the proper ontology related to the domain of the
resource. It is the ontology that contains at least one concept which denotes the
resources the user is interested in. The approach considers resources as instances of
well identified concepts. The system proposes a list of concepts which constitute the
entry points of the ontology (see section 4.4). Once the initial concept is chosen, a
list of properties related to the type of resources is proposed to the user. The process
goes on, following step by step a path in an ontology and stops when the end of
the path is reached. From the steps followed, the system creates a small knowledge
base. See section 4.3 for details on cycles problems.

For instance, the user thinks of the following query: What are the documents
written by Chomsky?. This step is identified as ”Query in NL” (NL means ”Natural
Language”) in figure 4.2. It is not actually part of the creation of the ”Semantic
Desription”, but it is just a mental process the user does before providing input to
the system. Figure 4.2 shows that, starting from the user formulation, the system
creates a formal representation of the user input, paraphrasing the user query. From
the formal representation the system creates the description.

48



4.1 – Semantic Indexing

Figure 4.2. Query paraphrase formulation

The system guides the user in navigating the chosen ontology, recognizes the
minimal path of the ontology that represents the meaning of the user query and
builds the real query. In the example, the real query can be translated in natural
language by What are the documents having an author whose name is Chomsky?
(that paraphrases the path in the ontology).

Figure 4.3 shows the path followed by the user and the complementary informa-
tion found in an ontology (or in a knowledge base).

d

"Chomsky"

id chomsky

AuthorDocument

has author

is
of

ty
pe

has
name

is
of

type

.
.
.

Figure 4.3. Query formulation

49



4 – Research

A path is a sequence of nodes representing individuals or concepts linked by arcs
representing properties of the ontology.

4.1.3 Ontologies and Knowledge Bases

Our approach is based on the description elements that the user can select for de-
scribing a resource or building a query. They are contained in ontologies as concepts,
relations and individuals.

We assume that expert community members are able to browse the Web in
order to find the ontologies that can be used to describe the resources shared by
the community. Eventually, they can build themselves some of the ontologies. They
may also have the desire to build a population of an ontology grouping together with
the most prominent individuals of the domain. In this case it is better to talk about
knowledge bases available for describing a resource. For simplicity reasons, we only
use the term ”ontology” in the following sections to denote both an ontology and
a knowledge base. The choice of more than one ontology does not introduce any
ambiguity because each ontology is universally identified by its URI1.

The ontologies used for resource descriptions are then published by the expert
members in the P2P network as resources. Our system allows publication each time
a new ontology becomes useful for the community, so it can be shared. However,
most users are not aware of the existence of ontologies and are not involved in this
process. The publishing of an ontology also requires a small description and an
application domain for helping a user to choose the needed ontology.

It is not possible to cancel an ontology because the resources described with it
could then not be retrieved.

We have created a system ontology (called System Ontology, denoted by system,
detailed in section 4.4.2) for implementing some specific cases of resources descrip-
tion. It allows to identify an ontology that will serve for indexing resources. A
special key, using the system ontology, is created for the publication and the dis-
covery of the ontologies in the network. In particular the system ontology is also
published in the network.

In some cases, a resource to be indexed must be considered as an instance of a
specific concept (e.g. Resource, Document, LearningObject). Expert users have to
recognize a particular set of concepts that can represent a type of resource when
they want to publish a new ontology in the network. This set, called Ontology Entry
Points, is then added to the description of the ontology. In our system ontology entry
points are well emphasized in order to give the user the awareness of those elements
denoting the resources the ontology can help to retrieve. In describing a resource,
they constitute the first element the user has to select.

1http://www.w3.org/Addressing/

50



4.1 – Semantic Indexing

During the process of indexing, our system needs to look for the range of a
property. Generally it is explicitly defined by the ontology designer and represents
the most specialized concept, a type of the object (c) associated to a property (p)
in triples like (s,p,c). To apply the rdfs semantics, if (p, rdfs:range, C) and (C,
rdfs:subClassOf, B) then (p, rdfs:range, B). So, a query asking for the range of a
property will return a set containing the main specialized concept but also all its
super-concepts. Due to this fact, we do not apply the rdfs semantics. In practice,
as we will see in chapter 5, this problem is simple to solve. It is sufficient to use a
Knowledge Base engine (Jena Model) that does not apply such kind of semantics.

The semantics of rdfs:range is depicted in figure 4.4.

Figure 4.4. Semantics of rdfs:range

As shown in the following sections, the System Ontology, provided by the system,
unifies the modelling of resource descriptions.

Hereafter we refer to an ontology by a namespace prefix that shortens its names-
pace name. In the context of our work, the namespace prefix identifies unambigu-
ously the elements of an ontology.

4.1.3.1 The Set of Ontologies

For describing different examples presented in this work, we use the following set of
ontologies: lom.owl (denoted by lom) [38], developed at ”Université de Technologie
de Compiègne” for representing the domain of learning objects; lt.owl (denoted by lt)
describes the concepts of the Theory of Languages; system.owl (denoted by system)
is an ontology we have developed for representing the resources of our system that
allows indexing; tg-release3-1.owl (denoted by tg) [64] concerns social care services in
the e-government domain; foaf.owl (denoted by foaf ), the FOAF formal vocabulary
description; GeoSkills.owl (denoted by geo), concerns the competencies, topics, and
educational levels of the mathematics curriculum standards throughout Europe.

51



4 – Research

4.1.4 Types of Queries

4.1.4.1 Fundamentals

We consider two fundamental types of queries. The first one (called Resource Query
Type in the rest of the document) aims at finding resources from elements of de-
scription that concern the resources themselves and not directly their content. For
instances: What are the resources written by Chomsky? I search for difficult exer-
cises. We consider that the resources concerned by the queries of this type can be
represented by instances of a specific concept of a domain ontology: about Theory of
Languages, denoted by lt, for the first example and about Learning Object, denoted
by lom, for the second one. We call Resource Type the initial concept that the user
must identify for denoting the resources she is looking for. The properties useful
for interpreting user queries have to be chosen in the ontology of the resource type.
This kind of queries relies on only one ontology.

The second type (called Content Query Type in the rest of the document) aims
at finding resources from elements of description that concern their content. For
instance: What are the resources about Chomsky? What are the resources about
grammar? Both queries concern the topic of the content of the resource. The
queries ask for a resource about something and not written by somebody. In most
cases, it is not possible to find a unique ontology for describing the essence of a
resource and its content simultaneously. We need a specific ontology, the System
Ontology (see section 4.4.2 for details). Instances of the Document concept of the
System Ontology represent the resources related to the queries of this type. The
system:Document is the specific concept we use for the last two examples. Elements
of a domain ontology (for the last two examples Theory of Languages and Learning
Object) can represent the content of the resources associated with the queries of this
type. These kind of queries rely on two ontologies.

4.1.4.2 Resource Query Type

Resource Query Type aims at finding resources giving elements of description con-
cerning the resource itself and not its content. Let’s consider the query: What are
the documents written by Chomsky?

Our system helps to discover the concept that the resources are instances of.
In this case the user chooses the concept of Document (lt:Document, among the
ontology entry points proposed by the system) occurring in the ontology about
Theory of Languages. The ontology contains a property whose domain is the concept
lt:Document and that denotes the meaning of the query: lt:has author, translating
written by, leads to the Author concept.

Documents written by Chomsky.
paraphrases

52



4.1 – Semantic Indexing

:d

"Chomsky"

lt:id chomsky

lt:Authorlt:Document

lt:has author

rd
f:
ty
pe

lt:has
name

rdf:type

Figure 4.5. Representation of the query: Documents written by Chomsky

Documents has author id Chomsky.
The process goes on following the next steps in the ontology. The ontology con-

tains some individuals of the concept lt:Author. The system shows these individuals
and the user can choose lt:id chomsky, verifying with the displayed attributes that
it is the right author (”Chomsky”). The process is finished and the end of the path
is reached. In this case the choice of a property and an individual has determined
all the elements contained in the user query.

Figure 4.5 shows the description of a resource satisfying the query. The rectangle
delimits the path that the system uses to build the real query.

4.1.4.3 Content Query Type

Content Query Type aims at finding resources giving elements of description that
concern their content.

For instance, the user imagines the query: What are the documents about the
author Chomsky? She is looking for resources whose content gives information
about the author Chomsky.

:d

system:Document

"Chomsky"

lt:id chomsky

lt:Author

system:has interest

rd
f:
ty
pe

lt:has
name

rdf:type

Figure 4.6. Representation of the query: Documents about Chomsky

53



4 – Research

These kind of queries require two ontologies. The system shows the entry points
of the System Ontology. For the query of the example, the user chooses the con-
cept system:Document. Instances of the concept system:Document represent the
resources concerning the queries of this type. Among the properties of the System
Ontology the user selects system:has interest because its domain contains the con-
cept system:Document. For representing the content of the resources concerned by
the query, it is necessary to have a second ontology: the domain ontology Theory of
Languages. The system shows the possible elements of a second ontology that can
be contained in the range of the property system:has interest. The user selects the
individual of the concept lt:Author identified as lt:id chomsky. This individual has
for name ”Chomsky”. The process is finished and the end of the path is reached.
The elements contained in the user query have been determined by the choice of a
property and an individual.

Figure 4.6 shows the ontological elements related to the query. The rectangle
delimits the path that the System uses to build the real query.

Now, let’s consider the query: What are the documents about Grammar? The
user is looking for resources whose contents give information about the topic Gram-
mar.

:d

system:Document

lt:Grammar

owl:Class

system:has interest

rdf:type rd
f:
ty
pe

Figure 4.7. Representation of the query: Documents about Grammar

The first step of the process is the same as in the former example: the user selects
an individual of the system:Document concept and the system:has interest property.
Then, the user chooses the second ontology about the Theory of Languages. In this
ontology the user finds and select the concept lt:Grammar. The end of the path is
reached and the process is finished. The elements contained in the user query have
been determined by the choice of a property and a concept.

Figure 4.7 shows the ontological elements related to the query. For building a
real query, the system uses the path delimited by the rectangle.

4.1.4.4 Open and Closed Queries

Our approach allows us to build closed queries i.e. all their elements are available
in the ontology (or in the knowledge base).

54



4.1 – Semantic Indexing

However we have considered a particular case of an open query where the user
can add the value of a property.

For instance, if the user intends to ask: What are the documents written by
XXX?, where the XXX value is not in the knowledge base, she is allowed to add it.
Figure 4.8 shows that the user has added ”D.Ullman” as an author name.

:d

"D. Ullman"

"D. Ullman"

lt:Author

lt:has author

rd
f:
ty
pe

lt:has
name

Figure 4.8. Knowledge base associated to an open query

With open queries, we give the user the possibility to input a keyword manually.
It is important to observe that such keyword is not out of any context but it is
provided as a value of a property of an ontology which is necessarily the last step
of the query building process. Such a query may have success if and only if a
description using the same keyword has been supplied by some resource provider.

4.1.4.5 Other Queries

Other queries are more complex because they concern a path involving more nodes.
Let’s consider the following query: What are the very difficult documents? The

query aims at finding resources with elements of description concerned with the
essence of the resources themselves. This is the case of ”Resource Query Type”.
The meaning of the user query refers to those resources that are documents; the
documents are identified as those with an attribute of difficulty; the level of diffi-
culty is ”very difficult”. The ontological elements required for interpreting the user
query rely on the domain ontology Learning Object Model, LOM (denoted by lom).
Among the entry points the system proposes, the user selects Learning Object. It
is the concept whose individuals can represent resources searched by the user. For
expressing the meaning of difficulty, the LOM ontology provides the concept Dif-
ficulty. It is not possible to find in this ontology a direct connection between an
individual of Learning Object and an individual of Difficulty. In fact there is no
property within the LOM ontology whose domain is the Learning Object concept
and range is the Difficulty concept. A path with more steps is necessary.

55



4 – Research

After the user has chosen the entry point Learning Object, the system proposes
the properties whose domain is the Learning Object concept. The user selects
has lomEducational. This property has for the range the concept LomEducation-
alCategory. In the next step, the user selects the property has difficulty and an
individual of the class Difficulty as the range of this property. This individual bears
the label ”Very difficult”. The process is finished and the end of the path is reached.

:lo

lom:LearningObject

:lec lom:very difficult

lom:LomEducationalCategory lom:Difficulty

"Very Difficult"

rdf:type

lom:has lomEducational lom:has difficulty

rd
f:
ty
pe

rd
f:
ty
pe

rdfs:label

Figure 4.9. Representation of the query: Very difficult documents

The ontological elements related to the query are shown in figure 4.9.

4.1.4.6 Query Extension

A query is an extension of another query when the resources it asks for concern a
more general category of elements. The extension of a query is obtained starting
from the first query. For this query there is a path in ontologies or knowledge bases.
The extended query relies on another path created discovering the relations in the
ontologies or knowledge bases among the elements of the first path.

If the query is: What are the documents about Stack?

An extended query is: What are the documents about Data Structure?

The documents concerning stack also concern data structure. The concept
lt:Data Structure subsumes the concept lt:Stack (both concepts are part of the on-
tology concerning the Theory of Languages, denoted by lt).

56



4.1 – Semantic Indexing

:d

system:Document

lt:Stack

owl:Class

system:has interest

rdf:type rd
f:
ty
pe

(a) Knowledge base associated to documents about Stack

:d

system:Document

lt:Stack lt:Data Structure

owl:Class

system:has interest

rdf:type

rd
f:
ty
pe

rdf:type

rdfs:subClassOf

system:has interest

(b) Knowledge base associated to documents about Data Structure

Figure 4.10. Extended Query building

4.1.4.7 Range Queries

Our system has not been designed to answer certain types of queries: e.g. What
are the documents written between 1930 and 1940? This is so because our system
depends on the structure of DHTs: DHTs only support exact matching queries and
do not support non-trivial queries involving temporal and geographic information
[94]. A resource cannot be described with an interval of values. A range query [94]
is the process of retrieving information from an interval of values given with a lower
and an upper boundary. There are several works that face the problem of range
queries, [27] [77], highlighting the fact that more scalable solutions require to store
a distributed indexing data structure in the P2P network differently than for linear
queries.

In certain cases we face queries that have not been mentioned before. These
queries are not considered because they are outside the scope of this work.

4.1.4.8 Queries Formal Representation

The query represented in figure 4.9 displays some Learning Objects. It can be
represented by the SPARQL query shown in figure 4.11 on the left. The results of
this query denote resources that have an RDF description, similar to that on figure
4.11, on the right. For describing such resources the blank nodes identifiers have no
meaning, only the structure of the triples are significant.

57



4 – Research

SELECT ?x WHERE {

?x rdf:type lom:LearningObject .

?x lom:hasEducational ?y .

?y rdf:type lom:LomEducationalCategory .

?y lom:hasDifficulty lom:very_difficult .

}

Query representation in SPARQL

_:lo rdf:type lom:LearningObject .

_:lo lom:hasEducational :_lec .

_:lec rdf:type lom:LomEducationalCategory .

_:lec lom:hasDifficulty lom:very_difficult .

Resource description in RDF

Figure 4.11. Representations of the same resources

The structure of the Graph Pattern of the SPARQL query is identical to the
structure of the Ground Graph Pattern of the RDF description. For this reason,
the same process can be used for formulating a query and a matching description.

4.1.4.9 Boolean Operators

A simple query is a query like ”what are the resources that present criteria A”. We
can translate with ”what are the resources that are described with criteria A” and
finally with ”what are the resources that have the description A”.

Let qA be the query with criteria A, and dA the description A. qA allows to
retrieve documents with dA.

Let Doc be the set of all resource identifiers in the index.

Res(qA) is the result of the query qA. It contains the documents with the de-
scription dA.

Res(qA) = {x ∈ Doc, x has description dA} (4.1)

Res(qB) is the result of the query qB. It contains the documents with the de-
scription dB.

Res(qB) = {x ∈ Doc, x has description dB} (4.2)

A complex query refers to a logical expression combining elementary criteria and
boolean operators. We translate queries like ”what are the resources that present cri-
teria A and criteria B” with ”what are the resources that are described with criteria
A and criteria B” and finally with ”what are the resources that have descriptions A
and description B”. For example a query like ”what are the documents about Gram-
mar that are Very Difficult” can have answers because some resources have been
described as Documents about Grammar and as Documents Very Difficult. They
have been published with the description Documents about Grammar and with the
description Documents Very Difficult.

58



4.2 – Resources Description

qA&&B is the query with criteria A and criteria B. Res(qA&&B) is the result of
the query qA&&B.

Res(qA&&B) = Res(qA) ∩Res(qB) (4.3)

The result of the complex query qA&&B requires two queries qA and qB and is the
intersection of their results.

Res(qA∥B) = Res(qA) ∪Res(qB) (4.4)

The result of the complex query qA∥B requires two queries qA and qB and is the
union of their results.

We have chosen not to implement the not operator.

Res(q¬A) = Doc\Res(qA) (4.5)

Doc is the set of all resource identifiers in the index and qA is the set of documents
with the description dA. The result of the complex query q¬A requires two queries.
The result of the complex query is the set-theoretic difference of their results. This
set of resources is heterogeneous because it contains all the resources that do not
have a description dA. These kind of queries are not useful in a system dedicated to
give affirmative responses.

OWL 2 [48] allows a kind of negation through the NegativeObjectPropertyAsser-
tion and the NegativeDataPropertyAssertion. We can state that two individuals are
not connected by a property, like in the following example that says that Luca is
not Matteo’s father:

NegativeObjectPropertyAssertion(: hasFather : Matteo : Luca) (4.6)

Likewise, we can state that Luca’s weight is not 80:

NegativeDataPropertyAssertion(: hasWeight : Luca”80”^^xsd : integer) (4.7)

These features do not solve the issue of the not operator because they allow
to create resource descriptions only for well identified triples, while nothing can be
specified as negative description for the same resources.

4.2 Resources Description

4.2.1 Introduction

In our approach, resources are managed in the same way in both private and shared
memories and have to be described by users. The same system of description is

59



4 – Research

used in both memories. We consider semantic descriptions built manually from
the elements extracted from ontologies. Semantic descriptions are directly used for
creating index entries. Semantic indexing has been designed so that it can be used
to answer different types of queries presented in the previous section (see 4.1.4).

A resource can be described in different ways, and can be an answer for several
queries. We have introduced two categories of queries, Resource Query Type and
Content Query Type, depending on the elements concerning the resources themselves
or more directly their content. The System Ontology added to domain ontologies
allows us to unify resource descriptions in only one model. The reason for that
is that resources have to be considered as instances of specific concepts of domain
ontologies, or instances of the concept Document of the System Ontology. The
difficulty is to present to users who are not aware of the knowledge representation, a
navigational system that is able to guide the users in building resources descriptions.

The first element to be identified is the Resource Type, i.e. the initial concept
that the user must select for denoting the current resource. Step by step, the process
follows a path in one or two ontologies and stops when the user considers that the
end of the path is reached or because the path cannot go on. The choice of properties
and individuals during this process determines all elements contained in the final
description. The system is able to build closed descriptions i.e. when all their
elements are available in the ontologies. In some cases, the user is allowed to add
the value of a property (the user can enter a keyword manually) and so the system
completes an open description.

4.2.2 Sequence of Properties

Let’s consider a sequence of two triples, (a,R,b) and (b,S,c), depicted in figure 4.12
as an RDF graph where the object of the first triple is the subject of the second
one. We may group this sequence obtaining the triple (a,RϕS,c), where RϕS is the
property result of the combination between R and S.

a b c

a c

R S

RϕS

Figure 4.12. Sequence of triples

Definition 4.3. (Operator followedBy)

60



4.2 – Resources Description

Given two properties R and S, RϕS (R followedBy S) is a new property meaning
that the relation R is applied first and then the relation S.

Let I = (∆I ,(·)I) (defined in section 2.2.1) be an interpretation. The semantics
of the operator ϕ is given by:

(RϕS)I = {(x,y) ∈ ∆I ×∆I |∃z ∈ ∆I ,(x,z) ∈ RI ∧ (z,y) ∈ SI}

The definition is iterative and can be applied to a sequence of n properties
pairwise.

4.2.3 Description Tree

When creating a description, the system has to consider a small knowledge base
that results from the steps followed. This knowledge base can be represented as a
tree, called Description Tree (hereafter tree).

Definition 4.4. (Description Tree)
A Description Tree is an RDF graph. The root is always a blank node repre-

senting the resource referred by the description. Other nodes are also blank nodes,
except nodes on the last level and the leaves, that are nodes identified by URIs or
literals.

Let’s consider the description: documents about Grammar and Very Difficult.
The two components of the description (about Grammar and Very Difficult) refer
to two different ontologies and are built separately. The knowledge base created by
the system, resulting from the description steps can be represented by two trees (see
figures 4.13(a) and 4.13(b)).

However, the logical description is unique and the resource can be represented as
an instance of two concepts: Document in the System Ontology and LearningObject
in the LOM.

Nodes :d and :lo have to be merged because they refer the same resource(see
:id document in figure 4.14).

61



4 – Research

:d

system:Document

lt:Grammar

owl:Class

system:has interest

rdf:type rd
f:
ty
pe

(a) Tree associated to documents about Grammar starting from d

:lo

lom:LearningObject

:lec lom:very difficult

lom:LomEducationalCategory lom:Difficulty

"Very Difficult"

rdf:type

lom:has lomEducational lom:has difficulty

rd
f:
ty
pe

rd
f:
ty
pe

rdfs:label

(b) Tree associated to documents Very Difficult starting from lo

Figure 4.13. The query is considered split in two

Figure 4.14 shows the tree associated with the resource starting from the root
:id document.

62



4.2 – Resources Description

:id document

system:Document

lom:LearningObject

lt:Grammar

owl:Class

:lec lom:very difficult

lom:LomEducationalCategory

lom:Difficulty

"Very Difficult"
rd
f:
ty
pe

sys
tem

:ha
s int

ere
st

rdf:type
rd
f:
ty
pe

rd
f:
ty
pe

lom:has lomEducational
lom:has difficulty

rd
f:
ty
pe

rdfs:label

Figure 4.14. Tree associated to documents about Grammar, Very Difficult

4.2.4 Simple Description

Within a tree, the root denotes the selected resource and is represented as a blank
node. The other nodes can be individuals or concepts in ontologies. Leaves can be
literals. The arcs are properties that connect the nodes. Inside the tree, a path
describes the backbone of the description.

Definition 4.5. (Simple Description)
A Simple Description is a Description Tree where the root has one and only one

child (except those related to the property rdf:type). The tree in figure 4.15 follows
n steps depending on n properties starting from the root. At each intermediate
step, the element in the range of the property is in the domain of the following
property and is represented by a blank node. A Simple Description is the semantic
description of the resource.

:id document

p1 ... pn

Figure 4.15. A Simple Description

The n properties may be assimilated to a sequence of properties. Combining
the properties results in a compacted graph where the blank nodes are removed (see
section 4.3 for blank node removing and the format of keys). A simple description

63



4 – Research

SDes may be associated to more than one resource. It is equivalent to a boolean
predicate, pSDes, on resources (res). The value of the predicate is true for each
resource represented by SDes (having the same description).

pSDes(res) = true, iff res is described by SDes

A query based on a simple description QSDes allows one to retrieve the resources
described by SDes.

The results of the query are these resources.

Result(QSDes) = {res,pSDes(res) = true}

4.2.5 Complex Description

Definition 4.6. (Complex Description)
A Complex Description is a Description Tree where the root has more than one

child. The tree is the merging of the n simple descriptions combined with the AND
boolean operator, where n is the number of children (except those related to the
rdf:type property) of the root. A Complex Description CDes is defined by the union
of simple descriptions:

CDes = SDes1 ∨ SDes2 ∨ ... ∨ SDesn

A Complex Description contains several paths. Each path starts from the root
and relates a Simple Description SDes.

:id document

P1

P3

P2

Figure 4.16. Tree associated to a complex description

In figure 4.16 a complex description is represented by a unique tree. Three paths
start from root and follow the three properties P1, P2 and P3.

64



4.2 – Resources Description

:id document

P1

P3

P2

AND

:id document

P2

P1

P3

AND

:id document

P3

P2

P1

Figure 4.17. Each path corresponds to a description

Considering n different paths addressing n resources, the Complex Description
CDes is the union of the Simple Descriptions:

CDes =

i=1,n

SDesi

For each resource res represented by CDes, the value of the predicate pCDes is
true and:

65



4 – Research

pSDesi(res) = true,∀i = 1,n

A query requesting for resources having a complex description will be considered
as a set of elementary queries about resources having a simple description. The
result of the query will be the intersection of the elementary query results.

Result(QCDes) =

i=1,n

Result(QSDesi)

66



4.3 – Creation of Keys

4.3 Creation of Keys

4.3.1 Introduction

In the system, a Semantic Description is associated with one or more resources. The
resources are catalogued within the Semantic Index. We call index the Semantic
Index and indexing the Semantic indexing. The index is composed of entries that
are pairs of data (key,value). The key is generated from the semantic description,
that in its turn is created from the path followed by the user for describing the
resource. The same indexing is used for both personal and shared memories (see
chapter 5 for details).

The distributed index, that concerns the shared memory, is allocated in the DHT
of the P2P network. Each node of the network contains a portion of the whole DHT.
The value of an entry is a list of elements containing the access point to the resource
addressed by the key. A resource is accessed either through its URL (it is accessible
when the URL is reachable), or through its entire data content (in this way the
access to this resources is completely decentralized and the resources are available
while the DHT is running). See figure 4.18. Some resources require their content
be inserted into the DHT. They concern either the core elements of the System,
e.g. the ontologies used to create the keys of indexing, or the elements bound to
the community, e.g. the Wiki of the Community, Personal Notes (details in section
4.6).

The local index, that concerns the personal memory, is stored in a local archive
within the peer. Resources are always files. The value of an entry is the reference
of the resource in the local file system.

Keys are used in the system for the publication and retrieval of resources. The
publication of a resource may lead to the creation of a new key and a new entry
in the index, or the adding of the resource reference into an existing entry when
the key used for describing the resource already occurs in the index. The retrieval
allows to find in the index the resources that correspond to a research key.

A key used in the index is a representation of the semantic description of a
resource and is written in a language based on RDF.

67



4 – Research

Figure 4.18. An entry of the distributed index

4.3.2 Description Representation

Keys are generated considering the semantic description system (detailed in section
4.2), i.e. considering the two possible types of queries included in our system. For
creating a key, it is necessary to go through the Description Tree associated to the
resource. A Simple Description generates a single key; multiple keys are produced
from a Complex Description.

The two approaches we have considered for defining the semantic indexing of
resources have been unified thanks to the creation of the System Ontology (see
section 4.1.2.3 for details).

Let’s consider as example the resources that are described as very difficult, asso-
ciated to the query What are the Very Difficult documents? It is a case of Resource
Query Type (see section 4.1.4.2).

This sample requires an ontology concerning the domain of Learning Object that
contains the concept of Difficulty. The namespace name of this ontology and the
nature of its concepts are enough to ensure that it represents the right knowledge
domain. The user knows the Learning Object Model ontology [39] (denoted by
lom). Following the concepts and relations of this ontology, the resources have to be

68



4.3 – Creation of Keys

Figure 4.19. An entry of the local index

considered as learning objects that have an educational category whose difficulty level
is very difficult. The semantic description is an RDF graph (the Description Tree,
as described in section 4.2.3) that contains blank nodes useless for indexing because
they do not contain semantic information necessary for describing a resource. The
description contains the following triples:

courier

:lo rdf:type lom:LearningObject .
:lo lom:hasEducational : lec .
:lec rdf:type lom:LomEducationalCategory .
:lec lom:hasDifficulty lom:very difficult .

The N3 notation [12] synthesizes the description as follows:

courier
[ a lom:LearningObject ] lom:hasLomEducational
[a lom:LomEducationalCategory ;

lom:hasDifficulty lom:veryDifficult .]

Such a description shows the triples that hide the unnecessary blank nodes.
Moreover, applying the combination of properties (operator ϕ : followedBy) the
description can be represented by:

69



4 – Research

courier
[ a lom:LearningObject ]
lom:hasLomEducational ϕ lom:hasDifficulty lom:veryDifficult .

Then, a key used for indexing a resource is based on the above representation.
The format of the key is the following:

courier

Key 1:
{rdf:type,lom:LearningObject}
{lom:hasLomEducational}
{lom:hasDifficulty,lom:veryDifficult}

The first line represents the type of the resource, the second line is the first
considered property, and the third line is the second considered property and its
value. If more than two properties are combined by the followedBy operator, the
key will be composed of more lines similar to the second one.

The second example concerns Content Query Type (see section 4.1.4.3). It occurs
when a user does not consider an ontology where a concept can represent the type
of the resources. In this case, the user only assumes that the resources refer to
a subject. For example, a teacher can say that a resource is about deterministic
finite automaton (dfa). We only consider that the topic of the resource has to be
associated to a concept of an ontology. It is necessary to use the system:Document
concept to represent the type of such a resource and the system:hasInterest property
to link the resource to a concept of another ontology that qualifies its content. The
description contains the following triples:

courier
:d rdf:type system:Document .
:d system:hasInterest lt:dfa .

In the last triples lt denotes an ontology about Theory of Languages. The N3
notation synthesizes the description as follows:

courier [a system:Document] system:hasInterest lt:dfa

The format of the key is the following:

courier
Key 2:
{rdf:type,system:Document}
{system:hasInterest, lt:dfa}

In the latter case, it is not necessary to use the followedBy operator for simpli-
fying the path of the description.

To produce the final format of the keys, the namespaces prefixes are substituted
by the related namespaces names (URIs) and hash coding is applied.

70



4.3 – Creation of Keys

4.3.3 Context Extension

4.3.3.1 Definition

To create a key, we distinguish between the publication and retrieval contexts. They
do not involve the same conditions and circumstances.

Definition 4.7. (Publication Context)
We call Publication Context the description supplied for publishing a resource.

The publication context is used for creating the key associated to the resource
in the distributed index.

Definition 4.8. (Retrieval Context)
We call Retrieval Context the description supplied for searching resources.

A retrieval context is the description of a required resource and must correspond
to a publication context. For retrieving a resource a key must be supplied and must
be equal to the key created from a publication context. In a boolean index, as DHT,
keys used for retrieving resources must be equal to keys used for publishing. However
people should be able to find a resource with other characteristics than those exactly
used for publishing. Publication and retrieval contexts are different, but may lead
to the same resources. Considering the shared memory, an important issue to take
into account is the number of queries that have to be launched through the network.
It must be minimal in order to minimize the access time to the resources.

It is necessary to consider an extension process in order to retrieve a resource in
case of different requests. We can tackle this issue either at publishing time, thanks
to a description extension, or at retrieval time thanks to a query extension. The
last option involves producing several queries and in the case of resources retrieved
from the network, would be too time consuming. It is thus necessary to prepare a
description extension used when a new resource is published. There is no problem
with time at this stage of the process. The context extension produces a Complex
Description (see section 4.2.5) obtained combining the Simple Description supplied
by the resource provider with others generated by the system. The resource is then
published with different keys, one for each of the Simple Descriptions.

In this work we consider three cases of context extension.

4.3.3.2 Subsumption

Let’s consider the resource :d about the concept of Stack (found in the ontology
Theory of Language).

courier
:d
a system:Document ;
system:hasInterest lt:Stack .

71



4 – Research

In this ontology, the concept Stack has a super-concept: Data Structure. We
consider that any request of resources concerning Data Structure should also return
resources concerning Stack because Stack is a specialization of Data Structure.

In this case of publication context extension of the :d resource, we consider the
generalization of the Stack concept. As the content of :d is about Stack, it is also
concerning Data Structure type. So, we must identify two keys:

courier

Key initial:
{rdf:type,system:Document}
{system:hasInterest, lt:Stack}

Key extended:
{rdf:type,system:Document}
{system:hasInterest, lt:Data Structure}

The process of the subsumption context extension could involve several steps
of generalization in case of more levels in the hierarchy of concepts. However, we
choose to limit to one level in order to avoid too broad generalizations of requests.

4.3.3.3 Facet Extension

We consider the resource described as

courier
[ a lom:LearningObject ] lom:hasLomEducational
[a lom:LomEducationalCategory ;

lom:hasDifficulty lom:veryDifficult .]

that brings to create the key:

courier

Key initial:
{rdf:type,lom:LearningObject}
{lom:hasLomEducational}
{lom:hasDifficulty,lom:veryDifficult}

However, it is interesting to notice that such resource could be found from other
queries. For example, a user may be interested in learning objects where the diffi-
culty level has been defined, no matter its value. In this case, the retrieval context
is a description like the following, where <value> represents any instance of the
concept range of the property lom:hasDifficulty.

courier

:lo
rdf:type lom:LearningObject ;

lom:hasLomEducational :lec .
:lec
lom:hasDifficulty <value> .

It is not possible to create a key for each possible value. For representing this
idea, we decided to apply an extension of the key formalism, where the value of the

72



4.3 – Creation of Keys

last property is omitted. The corresponding key is:

courier

Key extended:
{rdf:type,lom:LearningObject}
{lom:hasLomEducational}
{lom:hasDifficulty}

As a result, the resource will be published with two keys:

courier

Key initial:
{rdf:type,lom:LearningObject}
{lom:hasLomEducational}
{lom:hasDifficulty,lom:veryDifficult}

Key extended:
{rdf:type,lom:LearningObject}
{lom:hasLomEducational}
{lom:hasDifficulty}

4.3.3.4 Category Extension

We consider resources about the author Chomsky. The case is included in a Content
Query Type and we find an ontology on Theory of Languages where the element
Chomsky is defined as an individual of the concept Author.

The resource is described as:

courier [a system:Document] system:hasInterest lt:chomsky

The key consequence to such a description is

courier
Key initial:
{rdf:type,system:Document}
{system:hasInterest, lt:chomsky}

This description can be expanded because its meaning may be intended also
as referring to a resource about an author in the same domain. In this case the
meaning is that a resource whose content is about a particular author, is also about
the concept of Author. In this way we consider possible to expand the description to
the category of the individual. The description, as a consequence of the extensions
is:

courier
[a system:Document] system:hasInterest lt:chomsky
[a system:Document] system:hasInterest lt:Author

We can identify two keys:

73



4 – Research

courier

Key initial:
{rdf:type,system:Document}
{system:hasInterest, lt:chomsky}

Key extended:
{rdf:type,system:Document}
{system:hasInterest, lt:Author}

4.3.4 Cases of Indexing

During this work we have seen, through various examples, some cases of indexing.
In this section we will see all the cases of indexing taken into consideration in our
system. They constitute an integration of the examples already provided in this
work. Moreover, they explain some cases not yet considered. In each case we tackle
the process of description and the creation of the keys of indexing. In some cases
it is necessary to perform slight adaptations of the process of creation of the keys.
In the event that the ontologies do not provide evident suitable elements for the
description, the user is allowed to add manually in the description a string that
represents the value of a property. This possibility is very important because it
allows to deal with knowledge bases where some interesting individuals are missing.
Some cases of indexing lead to a new kind of context extension. We also considered
the case where no ontologies are available for describing a resource. We thought
that it was interesting to let the user to associate keywords with a resource even it
represents an exception from a semantic point of view.

4.3.4.1 Indexing on the Resource Type

The ontology denoted by tg (in the e-government domain) contains the concept
tg:Z-Document that represents a report or a legal text. The following description

courier [a tg:Z-Document]

represents a resource of type tg:Z-Document.

We do not accept the indexing that is based only on the type of a resource, like in
the previous example, because the result of the corresponding query would contain
too many elements and would not be discriminating enough.

We can also describe a resource of type tg:Z-Document giving the tg:Z-Program
to which it refers:

courier [a tg:Z-Document] tg:hasProgram tg:Z-Program

If we had accepted the indexing on the type of a resource we should have extended
any other description that gives also a property to the resource. Indeed a resource
having a certain type T and which is specified, has also to be considered as a resource

74



4.3 – Creation of Keys

of type T.

4.3.4.2 Indexing on a Concept

This case of indexing relates a resource treating a particular topic. The description
of such a resource is given by elements that concern its content. For instance we
consider a Resource treating of Grammar. The elements of descriptions belong to
the System Ontology and to an ontology of domain which provides the concept
expressing the content of the resource.

The description of the resource contains the following triples, where <C> rep-
resents any concept:

courier
:d rdf:type system:Document .
:d system:hasInterest <C> .

The format of the key is:

courier
Key:
{rdf:type,system:Document}
{system:hasInterest, <C>}

In the case of subsumption extension, the indexing case remains the same because
a super-concept of a concept is also a concept.

4.3.4.3 Indexing on a Property

We can consider a resource about the life cycle of a learning object. According to
the LOM Ontology this is translated by the fact that a learning object has a life
cycle. The description of the resource contains the following triples:

courier
:d rdf:type system:Document .
:d system:hasInterest lom:hasLifeCycle .

This is a specific case of a description like the following, where <P> represents
any property:

courier
:d rdf:type system:Document .
:d system:hasInterest <P> .

The format of the key is:

courier
Key:
{rdf:type,system:Document}
{system:hasInterest, <P>}

We consider the subsumpion of properties as well as the subsumption of concepts
and the indexing case remains the same.

75



4 – Research

4.3.4.4 Indexing on an Individual

Let’s consider a resource treating of lt:chomsky which is an instance of the concept
lt:Author. The description of the resource contains the following triples:

courier
:d rdf:type system:Document .
:d system:hasInterest lt:chomsky .

It is a particular case on indexing on an individual <I>.

courier
:d rdf:type system:Document .
:d system:hasInterest <I> .

The format of the key is:

courier
Key:
{rdf:type,system:Document}
{system:hasInterest, <I>}

The application of the category extension to this case leads to the indexing of a
concept:

courier
:d rdf:type system:Document .
:d system:hasInterest lt:Author .

Consequently, this case generates two keys of the form:

courier

Key initial:
{rdf:type,system:Document}
{system:hasInterest, <I>}

Key extended:
{rdf:type,system:Document}
{system:hasInterest, <C>}

4.3.4.5 Indexing on a Keyword

It could happen that the user does not find any element, within an ontology, useful
enough for describing the content of a resource. Therefore it is necessary to allow
the user to insert a keyword manually. The System Ontology provides the prop-
erty system:hasKeyword defined for this purpose. Its range defines the type of the
keyword as xsd:string. For example let’s consider a resource about Medieval Italy.
Without any ontology about this topic, we could at least describe the resource with
the following triples:

courier
:d rdf:type system:Document .
:d system:hasKeyword ”Medieval Italy”^^xsd:string .

The general description of this case of indexing is:

76



4.3 – Creation of Keys

courier
:d rdf:type system:Document .
:d system:hasKeyword <k>^^xsd:string .

The format of the key is:

courier
Key:
{rdf:type,system:Document}
{system:hasKeyword, <k>}

The description provider should follow the guidelines for writing keywords, oth-
erwise it could be impossible for other users to find resources described in such a
way.

4.3.4.6 Indexing on a Virtual Individual

In the field of the Theory of Languages, Jeffrey D. Ullman is a famous author.
Considering the ontology denoted by lt we cannot find any individual of the concept
lt:Author referring to Jeffrey D. Ullman. Moreover, we cannot find in this ontology
any strings that contain the word Jeffrey D. Ullman. The system gives the user a
possibility to consider a virtual individual of the concept lt:Author and to specify
its name by inserting manually the value of the property lt:hasName. The virtual
individual is used in the description of the resource about the author Jeffrey D.
Ullman. The description of the resource contains the following triples:

courier

:d rdf:type system:Document .
:d system:hasInterest :a .
:a rdf:type lt:Author .
:a lt:hasName ”Jeffrey D. Ullman”^^xsd:string .

If we apply the mechanism of key creation presented in 4.3.2, we obtain the
following result:

courier

Key:
{rdf:type,system:Document}
{system:hasInterest}
{lt:hasName ”Jeffrey D. Ullman”^^xsd:string}

This representation has some drawbacks:

• there is no way to determine the type of the virtual individual;

• the property lt:hasName could refer to a concept other than lt:Author

In the case of a real individual, such as lom:very difficult, it is possible to deter-
mine its type lom:Difficulty through a query on the ontology. As a consequence, we
consider it essential to maintain the type of the virtual individual in the key:

77



4 – Research

courier

Key:
{rdf:type,system:Document}
{system:hasInterest,lt:Author}
{lt:hasName,”Jeffrey D. Ullman”}

This is a particular case of a generic key:

courier

Key:
{rdf:type,system:Document}
{system:hasInterest,<C>}
{<P>,<k>}

where <C> is the type of the virtual individual, <P> is the property which
domain contains the type of the virtual individual, and <k> is the ^^xsd:string
value the of the property <P> the user inserts manually.

As this case is similar to the case 4.3.4.4, it is necessary to apply the category
extension and to create another key whose the generic shape is the following:

courier
Key extended:
{rdf:type,system:Document}
{system:hasInterest, <C>}

Moreover, we can consider a new type of extension called ”Keyword Extension”
where the string added as value of a property in the description of a resource, is also
a keyword that can refer it. This case of extension gives another key:

courier
Key extended:
{rdf:type,system:Document}
{system:hasKeyword,<k>}

4.3.4.7 Iterative Indexing

This case of indexing refers to the resource and not to its content. The description
of such resource is given by elements that concern the type of the resource and
some of its properties. The elements of description are constituted by a sequence of
properties. For instance we consider a resource describing an Educational Program
applied in France. This resource can be described using the ontology GeoSkills,
denoted by geo. We create a description containing the following triples:

courier
:d rdf:type geo:EducationalProgram .
:d geo:inEducationalRegion geo:France .

In this example there is only one step (geo:inEducationalRegion) between the
resource ( :d) and the individual (geo:France) that ends the description path. The
corresponding keys are:

78



4.3 – Creation of Keys

courier

Key initial:
{rdf:type, geo:EducationalProgram}
{geo:inEducationalRegion, geo:France}

Key extended:
{rdf:type, geo:EducationalProgram}
{geo:inEducationalRegion}

The Key extended is obtained applying the facet extension.

The corresponding keys are a particular case of the general one:

courier

Key initial:
{rdf:type, <C>}
{<R>, <I>}

Key extended:
{rdf:type, <C>}
{<R>}

Where <C> is the type of the resource, <R> a relation and <I> an individual.

The example of section 4.3.3.3 describes resources very difficult. This is a case
with two steps between the resource itself and the individual <I> that ends the
path of the description.

Now we can consider a resources having the University of Compiègne (UTC)
as contributor. Using the lom ontology the corresponding description involves the
following triples:

courier

:d rdf:type lom:LearningObject .
:d lom:hasLomLifeCycle :b1 .
:b1 lom:hasContributeElement :b2 .
:b2 lom:hasEntity lom:utc .

The keys created from the description are:

79



4 – Research

courier

Key initial:
{rdf:type, lom:LearningObject}
{lom:hasLomLifeCycle}
{lom:hasContributeElement}
{lom:hasEntity, lom:utc}

Key extended:
{rdf:type, lom:LearningObject}
{lom:hasLomLifeCycle}
{lom:hasContributeElement}
{lom:hasEntity}

In this example there are three steps from the resource :d and the individual
lom:utc ending the description.

The generic case of an iterative indexing implies n steps, represented by n≥1
relations. A resource description contains the following triples:

courier

:d rdf:type <C>.
:d <R1> :b1 .
:b1 <R2> :b2 .
{. . . }

:bn−1 <Rn> <I> .

The general form of the keys is the following:

courier

Key initial:
{rdf:type, <C>}
{<R1>}
{. . . }
{<Rn>, <I>}

Key extended:
{rdf:type, <C>}
{<R1>}
{. . . }
{<Rn>}

4.3.4.8 Iterative Indexing Involving a Virtual Individual

Sometimes the ending individual is not defined within the ontology containing the
type of the resource. For that reason, our system gives the possibility to consider a
virtual individual and to insert it in the description giving one of its properties. In
the last example, the individual lom:utc could not be defined in the lom ontology.

80



4.3 – Creation of Keys

It is enough to give the type and the value of the attribute lom:name to qualify the
added virtual individual. The description of the resource would be:

courier

:d rdf:type lom:LearningObject .
:d lom:hasLomLifeCycle :b1 .
:b1 lom:hasContributeElement :b2 .
:b2 lom:hasEntity :vi .
:vi rdf:type lom:Organization .
:vi lom:name ”University of Compiègne”^^xsd:string .

The keys generated from the latter description are:

courier

Key initial:
{rdf:type, lom:LearningObject}
{lom:hasLomLifeCycle}
{lom:hasContributeElement}
{lom:hasEntity, lom:Organization}
{lom:name, ”University of Compiègne”^^xsd:string}

Key extended 1:
{rdf:type, lom:LearningObject}
{lom:hasLomLifeCycle}
{lom:hasContributeElement}
{lom:hasEntity}

Key extended 2:
{rdf:type, system:Document}
{system:hasKeyword, ”University of Compiègne”}

The resources addressed by this type of index are described by the following
triples expressed in the general form:

courier

:d rdf:type <C>.
:d <R1> :b1 .
:b1 <R2> :b2 .
{. . . }

:bn−1 <Rn> :vi .
:vi rdf:type <T>.
:vi <P> <k> .

The general form of the keys is:

81



4 – Research

courier

Key initial:
{rdf:type, <C>}
{<R1>}
{. . . }
{<Rn>, <T>}
{<P>, <k>}

Key extended 1:
{rdf:type, <C>}
{<R1>}
{. . . }
{<Rn>}

Key extended 2:
{rdf:type, system:Document}
{system:hasKeyword, <k>}

This possibility leads to the keyword extension, where the keyword inserted
by the resource provider as value of the property giving information on the virtual
individual. This extension was presented in a case that refers to the content indexing
of a resource. In this case the extension starts from a resource indexing case and lost
this characteristic. It seems to us more interesting to give access to the resource from
keyword, even if the original intention of the resource provider is not maintained.

So far we have considered the description of resources referring to their content
or to the resources themselves. The second type involves iterative indexing. We have
chosen this distinction in order to have clearer exposition. However it is possible to
find a property in an ontology that refers to the content of a resource, for instance
in the foaf ontology the property foaf:primaryTopic. So, the limit between both
cases of indexing is not so strict. Even if there is this possibility, for indexing a
resource about its content, we suggest to follow the processes shown in sections
4.3.4.2, 4.3.4.3, 4.3.4.4 and 4.3.4.5, that present a wider set of possibilities.

4.4 Use of Ontologies

4.4.1 Ontological Elements

Our solution leaves open the choice of the ontologies required for the resource de-
scription. However, users of the community should share them, otherwise the discov-
ery of the documents published in the network would be impossible. The ontologies
are published in the network as other resources. The publishing of an ontology
requires an index key and a small additional description (see figure 4.20). Such

82



4.4 – Use of Ontologies

description is additional information integrated in the value of the index entry when
the ontology is published. It includes the application domain of the ontology, the
set of Entry Points, and the URI identifying the namespace name of the ontology.
The additional information is used by users when they discover the ontologies in the
system and helps them for choosing the needed ontology.

Figure 4.20. The description provided when an ontology is published

For example, the lom ontology concerns the domain of e-Learning, has as its En-
try Point the concept lom:LearningObject and has as its namespace name the URI
http://www.owl-ontologies.com/2007/04/Jijel+UTC/lom.owl; the foaf ontol-
ogy describes links between people, has for Entry Point the concept foaf:Document
and has for namespace name http://xmlns.com/foaf/0.1/

The resource provider is responsible for the choice of the ontology. The man-
ual semantic indexing requires the selection of the ontologies used for building the
indexing key. A key may contain several concepts that belong to one or two ontolo-
gies. Within the ontology, an element is completely defined by its unique URI2 .
It is enough to insert the URIs of ontological elements for characterizing a resource
in the key of its indexing. Starting with this information, any software agent can
discover the type of the element inside a key and can decide to build new queries if
some queries do not give satisfying results.

2http://www.w3.org/Addressing/

83



4 – Research

4.4.2 The System Ontology

Resource description is based on the two models (described in section 4.1.4), defined
as Resource Query Type and Content Query Type. To unify the two models, we
have created the System Ontology. The basis is that resources have to be considered
as instances of specific concepts of domain ontologies, or instances of the concept
Document of the System Ontology.

Content Query Type aims at finding resources from elements of description that
concern their content. Such type of queries concern the content of the resource.
They ask for a resource about something. The resource provider means that the
topic of the resource is about a concept defined in an ontology without any other
specification. Users must discover the resource when they tell to the system they are
interested in resources concerning this concept. The System Ontology, denoted by
system, allows such descriptions. It contains the concept system:Document and the
relation system:hasInterest for representing this case. Using the System Ontology
and the ontology of Theory of Languages domain, denoted by lt, it is possible to
describe a document concerning the concept of Automaton with:

courier
[ a system:Document ]
system:hasInterest lt:Automaton.

The logical complexity of this representation is OWL Full. Inference in OWL
Full is clearly undecidable as OWL Full does not include restrictions on the use of
transitive properties which are required in order to maintain decidability. It is not
a problem for us because we only consider the subsumption of concepts. Even if it
is not useful for us, for maintaining the DL level of the description we could have
substituted the concept lt:Automaton with an anonymous instance lt: automaton.
The correct meaning of the description would be: a resource concerning any example
of automata.

Ontologies have to be indexed and published like any other resource. The sys-
tem ontology is automatically published when the system starts (see section 4.6).
A special key, using the System Ontology, is created for the publication and the
discovery of the ontologies in the system. The concept system:Ontology, subconcept
of system:Document is created for this purpose. An ontology used for indexing is
published in the system under the description:

courier [a system:Ontology]

This description is created by the system. We can notice that this kind of
description is not sufficient and it is not accepted by the system when a user wants
to publish a resource (as detailed in section 4.3.4.1).

In the case that no ontology is available, the system ontology is also useful for
associating some keywords with a resource.

In figure 4.21 we can see the hierarchy of concepts defined in the System Ontology.

84



4.4 – Use of Ontologies

The top concept is system:Document. It is used in the descriptions of Content Query
Type for addressing the resource to be described.

Figure 4.21. The concepts defined in the System Ontology

The system:Document concept is defined with the following OWL fragment:

<owl:Class rdf:ID="Document">

<rdfs:subClassOf rdf:resource="owl:Thing"/>

<rdfs:label xml:lang="en">Document</rdfs:label>

<rdfs:label xml:lang="fr">Document</rdfs:label>

<rdfs:label xml:lang="it">Documento</rdfs:label>

<rdfs:comment xml:lang="en">

The type of a resource used when describing its content.

</rdfs:comment>

</owl:Class>

system:Document

The concept system:Document is super concept of three concepts system:Ontology,
system:Note system:Wiki. These concepts have been created to represent the re-
sources of the system (the resources part of the community, see section 4.6). They
are used for describing resources on the Resource Query Type, for publishing the
resources of the system. Through these concepts it is possible to create descriptions
such as:

85



4 – Research

courier
[a system:Ontology]
[a system:Note]
[a system:Wiki]

for publishing ontologies, system notes and the system wiki.
The following OWL fragments detail their definitions:

<owl:Class rdf:ID="Ontology">

<rdfs:label xml:lang="en">Ontology</rdfs:label>

<rdfs:label xml:lang="fr">Ontologie</rdfs:label>

<rdfs:label xml:lang="it">Ontologia</rdfs:label>

<rdfs:comment xml:lang="en">The type of the ontologies used in the system

for indexing the resources.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="system:Document"/>

</owl:Class>

system:Ontology

<owl:Class rdf:ID="Note">

<rdfs:label xml:lang="en">Note</rdfs:label>

<rdfs:label xml:lang="fr">Note</rdfs:label>

<rdfs:label xml:lang="it">Appunto</rdfs:label>

<rdfs:comment xml:lang="en">The type of the notes used in the system by users

as short written reminders.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#Document"/>

</owl:Class>

system:Note

<owl:Class rdf:ID="Wiki">

<rdfs:label xml:lang="en">Wiki</rdfs:label>

<rdfs:label xml:lang="fr">Wiki</rdfs:label>

<rdfs:label xml:lang="it">Wiki</rdfs:label>

<rdfs:comment xml:lang="en">The type of the wiki of the system used by users

for sharing editable content.

<rdfs:subClassOf rdf:resource="#Document"/>

</rdfs:comment>

</owl:Class>

system:Wiki

86



4.4 – Use of Ontologies

The System Ontology defines the OWL object property system:hasInterest (see
figure 4.22). Such property is necessary for describing relations in Content Query
Types. The property links a system:Document with any resource represented by a
Uniform Resource Identifier Reference (URI).

Figure 4.22. The property system:hasInterest defined in the System Ontology

The property system:hasInterest is defined in OWL as follows:

<owl:DatatypeProperty rdf:ID="hasInterest">

<rdfs:label xml:lang="en">Has Interest</rdfs:label>

<rdfs:label xml:lang="fr">A intérêt en</rdfs:label>

<rdfs:label xml:lang="it">Fa riferimento a</rdfs:label>

<rdfs:comment xml:lang="en">

A property that links a Document to an ontological element that

denotes its content.

</rdfs:comment>

<rdfs:domain rdf:resource="#Document"/>

<rdfs:range rdf:resource="xsd:anyURI"/>

</owl:DatatypeProperty>

system:hasInterest

In addition to the latter property, the System Ontology defines the OWL datatype
property system:hasKeyword (see figure 4.23). Such property is necessary in Content
Query Types for linking system:Document with an xsd:string. Usually the property
is used to assert that the given keyword is contained within the resource.

The property system:hasKeyword is defined in OWL as follows:

87



4 – Research

Figure 4.23. The property system:hasKeyword defined in the System Ontology

<owl:DatatypeProperty rdf:ID="hasKeyword">

<rdfs:label xml:lang="en">Has Keyword</rdfs:label>

<rdfs:label xml:lang="fr">A mot clé</rdfs:label>

<rdfs:label xml:lang="it">Contiene la parola chiave</rdfs:label>

<rdfs:comment xml:lang="en">

A property that links a document to a keyword contained in its content.

</rdfs:comment>

<rdfs:domain rdf:resource="#Document"/>

<rdfs:range rdf:resource="xsd:string"/>

</owl:DatatypeProperty>

system:hasKeyword

4.5 Indexing Pattern

4.5.1 Introduction

In this work we have explained several cases of indexing including the description
of resources and the creation of the keys of their indexing. The description allows
to express a personal point of view on the specific context of the resources because
indexing is performed manually. The user follows a process of indexing, selecting
first the ontology to use, in order to relate the resources with the elements contained
within the ontology. The keys of indexing are created choosing concepts, individuals
and relations from the selected ontology.

We are interested not only in ”direct” associations like ”resource about a topic”,
but also in descriptions requiring several steps.

We call indexing pattern a generalization of a case of indexing that allows to

88



4.5 – Indexing Pattern

follow a path within an ontology and to create the keys of indexing. The indexing
patterns (hereafter patterns) are parts of the core of the system. They define a
sequence of steps. At each step, the user interacts only with the necessary part of
the ontology. The unnecessary parts are hidden. Selections at each step are inputs
to the next step.

4.5.2 Definition of Pattern

The semantic description of a resource is an RDF graph, that we call Description
Tree (discussed in section 4.2.3). All keys used for identifying a document in the
index represent its semantic description and are written in a language based on
RDF.

Let’s consider the description: documents Very Difficult.

In section 4.1.4 we saw that semantic indexing is defined on possible queries
the system can answer. The user thinks of the query in natural language What
are the very difficult documents? The system, considering the user input, applies
a mechanism of reformulation of the query based on the available ontologies, and
creates a semantic description. In this example the description can be expressed in
the form documents that are Learning Objects with an Educational Category with a
Difficulty level which is Very Difficult, and contains the following triples:

courier

:lo rdf:type lom:LearningObject .
:lo lom:hasEducational : lec .
:lec rdf:type lom:LomEducationalCategory .
:lec lom:hasDifficulty lom:veryDifficult .

They correspond to the knowledge base created by the system, resulting in the
description steps, where two instances :lo and :lec are specified:

courier

:lo
rdf:type lom:LearningObject ;

lom:hasLomEducational :lec .
:lec
a lom:LomEducationalCategory ;
lom:hasDifficulty lom:veryDifficult .

These two instances can be represented in the following RDF/XML form:

courier
<lom:LearningObject rdf:ID=” :lo”>

<lom:hasLomEducational rdf:resource=” :lec”/>
</lom:LearningObject>

89



4 – Research

courier
<lom:LomEducationalCategory rdf:ID=” :lec”>
<lom:hasDifficulty rdf:resource=”lom:veryDifficult”/>

</lom:LomEducationalCategory>

An OWL knowledge base can be expressed also in abstract syntax, called OWL
Semantics and Abstract Syntax (OWL S&AS [69]). Moreover, the Manchester OWL
Syntax [49] is a syntax that has been designed for writing OWL class expressions. It
was influenced by the OWL S&AS. For convenience, we give the Manchester OWL
Syntax representation of the two individuals :lo and :lec.

courier
Individual: :lo

Types: lom:LearningObject

Facts lom:hasLomEducational :lec

courier
Individual : :lec

Types: lom:LomEducationalCategory
Facts: lom:hasDifficulty lom:very difficult

The representation of the individual :lo is the particular case of an element of
description well identified by all its information. It is an instance of an entry point
of the LOM ontology. The Facts lom:hasLomEducational is specified once the type
of the individual :lo is given, lom:LearningObject. The same individual :lo could
be represented by a description with other Facts, because the LOM ontology defines
other properties whose domain is lom:LearningObject. Thus, the representation of
the individual :lo depends on parameter <T> and can be generalized by :

courier
Individual: :lo

Types: lom:LearningObject

Facts <T> :i

The type for the individual :lo could be any entry point C, defined for the LOM
Ontology. It is better to rename the individual :lo by :d (a document). Then,
the generalized representation of an individual addressed by the description can be
given by the following pattern:

courier
Individual: :d

Types: <C>

Facts <T> :i

Definition 4.9. (Description Template, D)
We define Description Template, the generalized description of a resource. Its

form is expressed in terms of the Manchester Syntax, extended with parameters.
Let Ri be the generalized description of an individual i in terms of the Manchester
Syntax. The Description Template D corresponds to:

90



4.5 – Indexing Pattern

D =

i=1,n

Ri

D contains blank nodes and parameters. The blank nodes correspond to the
individuals representing the elements of description. The values of the parameters
< Ti >, are fixed by users during the steps followed for creating the description. At
step i, the value of the parameter < Ti > is given by the user’s choices at step i− 1.

The first individual defined in R1 has an entry point for its type. In case of a
description about a resource itself, for selecting the entry point it is necessary to
choose first the ontology of the domain.

The values of the parameters correspond to user’s choices. For that, users need to
have at their disposal available options extracted from the chosen domain ontology.
Generally, the options are provided to users as results of SPARQL queries.

Definition 4.10. (Graph Template, γ <T>)
Let γ be a SPARQL graph pattern (see definition 2.8). A Graph Template,

γ <T>, is a graph pattern containing the parameter <T>. A variable appearing
in γ <T> is mapped by the query engine on a list of elements. The user’sused to
determined a property choice constitutes the value of a corresponding parameter at
the next step.

For example, the following graph template γ <C>:

γ <C> = {?p rdfs:domain <C>}

contains the parameter <C> representing a concept and the variable ?p used to
determine a property.

A grounded graph template does not contain any parameters and is a graph
pattern.

Definition 4.11. (Query Template, S<T>)
Let (γ, D, Q) be a SPARQL Query (see definition 2.9), where γ is a graph

pattern, D a data set and Q a type of query.
A Query Template is a query where the graph pattern has been substituted by

a Graph Template.
In our case, the dataset is always reduced to a single ontology O. The query form

Q is always of type SELECT. The one parameter corresponding query template is
then :

S<T> = (γ <T>, {O}, SELECT W )

91



4 – Research

Definition 4.12. (User Process, P)
The User Process, P is the sequence of steps necessary for determining the values

of the variables. It is composed of a sequence of assignments involving either Query
Templates, or other types of user inputs.

Definition 4.13. (Algorithm, A) An Algorithm is the sequence of computations
used for creating the keys of indexing. It contains some lines of pseudo-code.

The algorithm works on the elements assigned during the User Process.

Definition 4.14. (Indexing Pattern)
We call Indexing Pattern a triple
IP = (D,P ,A) where:

• D is a Description Template;

• P is a User Process ;

• A is an Algorithm.

4.5.3 Indexing Pattern on a Concept

In this section, we explain the details of the pattern addressing the indexing on a
concept of an ontology. This pattern is related to the case of indexing we have called
Indexing on a concept in section 4.3.4.2. The pattern of a knowledge base associated
to the description of a resource treating of a concept is represented in the following
figure (figure 4.24):

:d

system:Document

<C>

owl:Class

rdf:type

system:hasInterest

rdf:type

Figure 4.24. Indexing Pattern on a concept.

The user intends to describe a resource based on its content. For this case of
indexing it is necessary to use the System Ontology. The resource is represented
as a system:Document and the first property used to describe the resource is sys-
tem:hasInterest. The elements of description are all determined, except the final
concept that the user has to select within a domain ontology. The corresponding
description is composed of the following triples:

92



4.5 – Indexing Pattern

courier
:d rdf:type system:Document .
:d system:hasInterest <C> .
<C> rdf:type owl:Class .

Then we can define the Description Template, D as follows:

Individual: _:d

Types: system:Document

Facts: system:hasInterest <C>

D

The elements of description are determined through individual :d. The user
selects first the ontology of the domain. In order to fix the parameter <C>, she
is required to choose a concept. In fact, the parameter is determined by user’s
selections during the procedure defined by the following User Process, P :

O ← userOntologyChoice()

S←(γ , {O}, select ?cl)

with γ = { ?cl rdf:type owl:Class .}

<C> ← user(res(S))

P

First, the user chooses the ontology where the concept she needs is located
(method userOntologyChoice()). Then the system defines the graph pattern
S. As the select clause has one variable (?cl), when performing the query on the
dataset {O} the results is a list of concepts (res(S)) where the user selects the
concept she is interested in (user()). The process returns the class C representing
the concept the user intends to use for describing the resource.

The keys of indexing determined through this pattern are generated by the Al-
gorithm A. The algorithm receives as an input the output of the User Process that
is the result of user’s choices. The algorithm contains the following pseudo-code:

Algorithm 4.1 Calculate Keys for the Indexing Pattern on a concept

Require: C
Ensure: Key
Key = {rdf : type,system : Document}
append to Key {system : hasInterest,C}

We do not treat explicitly the case of a property because we consider the indexing
on a property in the same way as indexing on a concept.

93



4 – Research

4.5.4 Indexing Pattern on an Individual

This pattern is related to the case of indexing we called Indexing on an individual
in section 4.3.4.4. The pattern of a knowledge base associated to the description of
a resource is represented in the following figure (figure 4.25) where <i v> represents
the individual choosen by the user and <V> its type:

:d

system:Document

<i v>

<V>

rdf:type

system:hasInterest

rdf:type

Figure 4.25. Indexing Pattern on an individual.

The corresponding description is composed of the following triples:

courier
:d rdf:type system:Document .
:d system:hasInterest <i v> .
<i v> rdf:type <V> .

Then we can define the Description Template, D as follows:

Individual: _:d

Types: system:Document

Facts: system:hasInterest <i_v>

Individual: <i_v>

Types: <V>

D

The user selects first the ontology of the domain. Then she is required to choose a
concept and in conclusion one of its individuals. The parameter <i v> is determined
by the user selections during the procedure defined by the following User Process,
P :

94



4.5 – Indexing Pattern

O ← userOntologyChoice()

S1 ← (γ , {O}, select ?v)

with γ = { ?v rdf:type owl:Class . }

<V> ← user(res(S1))

S2 <V> ← (γ <V>, {O}, select ?i)

with γ <V> = { ?i rdf:type <V> . }

<i_v> ← user(res(S2 <V>))

P

The methods userOntologyChoice(), res(S) and user() have the same mean-
ing as in the previous case. The user process returns the following data:

• < V >, the concept representing the type of the individual to select;

• < i v >, the individual chosen by the user.

The keys of indexing determined through this pattern are generated by the Al-
gorithm A. The algorithm gets as input the output of the User Process, that is the
result of user choices. The algorithm contains the following pseudo-code:

Algorithm 4.2 Calculate Keys for the Indexing Pattern on an individual

Require: V , i v
Ensure: Key initial, Key extended
Key initial = {rdf : type,system : Document}
Key extended = {rdf : type,system : Document}
append to Key initial {system : hasInterest,i v}
append to Key extended {system : hasInterest,V }

The generated keys of indexing are in the following form:

courier

Key initial:
{rdf:type,system:Document}
{system:hasInterest, <I>}

Key extended:
{rdf:type,system:Document}
{system:hasInterest, <C>}

95



4 – Research

4.5.5 Indexing Pattern on a Keyword

This pattern is related to the case of indexing we have called Indexing on a keyword
in section 4.3.4.5. The knowledge base associated to the description is represented
in the following figure (figure 4.26):

:d

system:Document

k^^xsd:string

rdf:type

system:hasKeyword

Figure 4.26. Indexing Pattern on a keyword.

The elements of description concerns the content of the resource to be indexed.
The path ends on a keyword the user inserts manually.

The corresponding description is composed of the following triples:

courier
:d rdf:type system:Document .
:d system:hasKeyword <k>^^xsd:string .

Then we can define the Description Template, D as follows:

Individual: _:d

Types: system:Document

Facts: system:hasKeyword <k>

D

the following User Process, P :

<k> = user_input()

P

There is no ontology of domain involved in this pattern. The only ontology
required is the System Ontology.

The keys of indexing determined through this pattern are generated by the Al-
gorithm A. The algorithm gets as input only the text provided by the user, inserted
through the User Process. The algorithm contains the following pseudo-code:

96



4.5 – Indexing Pattern

Algorithm 4.3 Calculate Keys for the Indexing Pattern on a keyword

Require: k
Ensure: Key
Key = {rdf : type,system : Document}
append to Key {system : hasKeyword,k}

No extension mechanisms are applied in this case. The key has the following
form:

courier
Key:
{rdf:type,system:Document}
{system:hasKeyword, <k>}

97



4 – Research

4.5.6 Iterative Indexing Pattern

This pattern is related to the case of indexing that we have called Iterative Indexing
in section 4.3.4.7. The indexing process concerns the resource itself more than
its content, and is composed of a sequence of steps. First, the user chooses the
ontology of the domain that, in her opinion, contains the elements of description for
the resource to be indexed. Then, the user chooses the entry point in the ontology.
In each of the following steps the user chooses a property whose domain is the last
selected concept (the type of the resource in the first step). The system looks for
the range of this property and :

• proposes the instances of this concept if any such instance occurs in the on-
tology,

• and proposes to continue.

If the user continues the process, the system creates a virtual individual of the range
of the last selected property else the process stops because the user has chosen a
real individual of the ontology. The user can also give up the process.

Let’s consider as an example the process completed in 2 steps. The pattern of
a corresponding resource description is represented in the following figure (figure
4.27):

:d

<C>

:i

<T1 >

<i v>

<V>

rdf:type

<P1 >

rdf:type

<P2 >

rdf:type

Figure 4.27. Iterative Indexing Pattern with 2 steps.

The pattern is called with 2 steps because it involves the selection of two prop-
erties: P1 and P2.

The pattern involves two virtual individuals, :d and :i that the system has to
create and the final choice of the user <i v>. The type of the first virtual individual
is an entry point of the ontology of the domain chosen by the user. The second one
is created as an instance of the concept <T 1 >. The corresponding description is
composed of the following triples:

courier

:d rdf:type <C> .
:d <P1 > : i .
:i rdf:type <T1 > .
:i <P2 > <i v> .

98



4.5 – Indexing Pattern

We can define the Description Template, D as follows:

Individual: _:d

Types: <C>

Facts: <P1 >

Individual: _:i

Types: <T1 >

Facts: <P2 > <i_v>

D

The parameters are determined by the user selections during the procedure de-
fined by the following User Process, P :

O ← userOntologyChoice()

<C> ← user(entry_point(O))

S1<C> ← (γ<C>, {O}, select ?p ?r)

with γ<C> = {

?p rdf:type owl:ObjectProperty .

?p rdfs:domain <C> .

?p rdfs:range ?r . }

<P1, T1>← user(res(S1<C>))

S2<T1 >← (γ<T1>, {O}, select ?p ?v)

with γ<T1> = {

?p rdf:type owl:ObjectProperty .

?p rdfs:domain <T1 > .

?p rdfs:range ?v . }

<P2, V> ← user(res(S2<T1>))

S3<V> ← (γ<V>, {O}, select ?i)

with γ<V> = {?i rdf:type <V> .}

<i_v> ← user(res(S3<V>))

P

99



4 – Research

The line user(. . . ) expresses that user input is required. The first and second
lines concern the selection of the ontology of the domain and one of its entry points.
It is important to observe that in this User Process the two Query Template S1
and S2 have the Graph Template γ <. . .> of the same form and consist in querying
properties with a specific domain and their ranges. The two steps followed by a user
for describing resources through this pattern are guided by the queries S1 and S2 that
extract from the ontology the useful elements at each step. The user must choose
the elements needed for the description by selecting among the results provided by
the queries. The final query S3 determines the end of the user process because the
user selects a real individual defined in the ontology.

The iterative pattern with 2 steps is a particular case of the general Iterative
Pattern. The general case is structured in n steps because the user can follow
an indefinite number of steps before choosing the final individual that ends the
description. The description is composed of an indefinite number of triples and can
be represented as follows:

courier

:d rdf:type <T0 > .
:d < P1 > : i1.
:i1 rdf:type <T1 > .
:i1 < P2 > : i2.
. . .
:in−1 rdf:type <Tn−1 > .
:in−1 < Pn > <i v> .

The knowledge base associated with the description is represented in the follow-
ing figure (4.28):

:d

< T0 >

:i1

< T1 >

:i2

< T2 >

...

<...>

<i v>

< Tn >
rdf:type

< P1 >

rdf:type

< P2 >

rdf:type

...

rdf:type

< Pn >

rdf:type

Figure 4.28. Iterative Indexing Pattern with n steps.

The Description Template, D is defined as follows:

100



4.5 – Indexing Pattern

Individual: _:d

Types: <T0>

loop (k=1,n)

Facts: <Pk> _:ik

Individual: _:ik

Types: <Tk>

end loop

<i_v> ← _:in

<V> ← <Tn>

D

The type of the first individual :d is an entry point of the domain ontology
chosen by the user. Then, n-1 virtual individuals ( :ik) must be created, connected
by a property.

The User Process, P is the following:

O ← userOntologyChoice()

T0 ← user(entry_point(O))

k ← 0

i_v ← null

repeat

k ← k++

Sk<Tk−1>←(γ<Tk−1>,{O}, select ?p ?r)

with γ<Tk−1>= {

?p rdf:type owl:ObjectProperty .

?p rdfs:domain <Tk−1> .

?p rdfs:range ?r . }

<pk, Tk>← user(res(Sk<Tk−1>))

SF <Tk>←(γ<Tk>, {O}, select ?i)

with γ<Tk>= { ?i rdf:type <Tk> . }

if (res(SF <Tk>))/= ∅

<i_v> = user(res(SF <Tk>))

until <i_v> /=null

P

101



4 – Research

The statement repeat . . . until repeats the queries Sk <Tk−1 > and SF <Tk >.
The first allows one to extract from the ontology the useful elements that the user
must select to continue the steps. The last query allows to determine the final
individual. The value chosen among the results of this query is used as an exit
condition for the statement repeat . . . until. The user process returns the following
data:

• T0, the entry point of the domain ontology chosen by the user;

• pk (k = 1,n), the properties chosen by the user through the n steps of indexing;

• < i v >, the individual chosen by the user at the end of the process of indexing.

The keys of indexing determined through this pattern are generated by the Al-
gorithm A. The algorithm gets as input the output of the User Process, that is the
result of user choices. The algorithm contains the following pseudo-code:

Algorithm 4.4 Calculate Keys for the Iterative Indexing Pattern

Require: T0, n, pk, i v
Ensure: Key initial, Key extended
Key initial = {rdf : type,T0}
Key extended = {rdf : type,T0}
for all i=1,(n-1) do
append to Key initial {pi}
append to Key extended {pi}

end for
append to Key initial {pn,i v}
append to Key extended {pn}

that generates the keys in the following form:

courier

Key initial:
{rdf:type, <T0 >}
{<p1>}
{. . . }
{<pn>, <i v>}

Key extended:
{rdf:type, <T0 >}
{<p1>}
{. . . }
{<pn>}

102



4.5 – Indexing Pattern

4.5.7 Iterative Indexing Pattern Involving a Virtual Indi-
vidual

This pattern is related to the case of indexing that we called Iterative Indexing in-
volving a virtual individual in section 4.3.4.8. This pattern is similar to the Iterative
Pattern. The difference is in the last step of the description. This pattern ends
when the user defines a virtual individual and selects one of its properties.

The description related to this pattern is composed of an indefinite number of
triples and can be represented as follows:

courier

:d rdf:type <T0 > .
:d < P1 > : i1.
:i1 rdf:type <T1 > .
:i1 < P2 > : i2.
. . .
:in−1 rdf:type <Tn−1 > .
:in−1 < Pn > :in .
:in rdf:type <Tn > .
:in < Pf > <k>^^xsd:string .

The knowledge base associated to the description is represented in the following
figure (4.29):

:d

< T0 >

:i1

< T1 >

:i2

< T2 >

...

<...>

:in

< Tn >

<k>^^xsd:string

rdf:type

< P1 >

rdf:type

< P2 >

rdf:type

...

rdf:type

< Pn >

rdf:type

<
P
f
>

Figure 4.29. Iterative Indexing Pattern with n steps involving a virtual individual.

103



4 – Research

The Description Template, D is defined as follows:

Individual: _:d

Types: <T0>

loop (j=1,n)

Facts: <Pj> _:ij

Individual: _:ij

Types: <Tj>

end loop

Individual: _in

Types: <Tn>

Facts: <Pf> <k>^^xsd:string

D

The User Process, P is the following:

O ← userOntologyChoice()

T0 ← user(entry_point(O))

j ← 0

i_v ← null

repeat

j ← j++

Sk<Tj−1>←(γ<Tj−1>, {O}, select ?p ?r)

with γ<Tj−1> = {

?p rdf:type owl:ObjectProperty .

?p rdfs:domain <Tj−1> .

?p rdfs:range ?r . }

<pj, Tj> = user(res(Sj<Tj−1>))

SF <Tj>←(γ<Tj>, {O}, select ?p_f)

with γ<Tj> = {

?p_f rdf:type owl:DatatypeProperty .

?p_f rdfs:domain <Tj> .

?p_f rdfs:range xsd:string .}

<pf> = user(res(SF <Tj>))

until <pf>/=null

<k> = user_input()

<Tn>=<Tj>

P

104



4.5 – Indexing Pattern

The user process returns:

• T0, the entry point of the domain ontology chosen by the user;

• pj (j = 1,n), the properties chosen by the user through the n steps of indexing;

• pf , the property for the final virtual individual;

• < k >, the keyword associated to the final virtual individual through the
property pf .

The keys of indexing determined through this pattern are generated by the Al-
gorithm A. The algorithm gets as an input the output of the User Process that is
the result of user’s choices. The algorithm contains the following pseudo-code:

Algorithm 4.5 Calculate Keys for the Iterative Indexing Pattern involving a virtual
individual
Require: T0, n, pf , <k>,
Ensure: Key initial, Key extended 1, Key extended 2
Key initial = {rdf : type,T0}
Key extended 1 = {rdf : type,T0}
for all j=1,(n-1) do
append to Key initial {pj}
append to Key extended 1 {pj}

end for
append to Key initial {pn, < Tn >}
append to Key initial {pf , < k >}
append to Key extended 1 {pn}
Key extended 2 = {rdf : type,system : Document}
append to Key extended 2 {system : hasKeyword,¡k¿}

that generates keys of the following form:

105



4 – Research

courier

Key initial:
{rdf:type, <C>}
{<R1>}
{. . . }
{<Rn>, <T>}
{<P>, <k>}

Key extended 1:
{rdf:type, <C>}
{<R1>}
{. . . }
{<Rn>}

Key extended 2:
{rdf:type, system:Document}
{system:hasKeyword, <k>}

106



4.6 – Main notions about Community

4.6 Main notions about Community

4.6.1 Introduction

Community of users interested in the same issues are frequently involved in col-
laborative activities of sharing and searching resources of similar types. The core
aspect is that the use of heavy tools and the dependency on centralized repositories
could restrain their participation. To attain such kind of collaboration, users of a
community have to describe their material semantically in relation to one or more
ontologies.

In the field of education, teachers use pedagogical material for supporting the
progress of courses and other activities that pertain to teaching. It is important
for both teachers and students to be able to easily find and bring back interesting
documents. Teachers agree to share resources with other teachers or students thanks
to a simple mechanism.

In this context we propose a system that allows the semantic indexing of resources
and their sharing among the members of the community. It consists of a P2P
infrastructure and a Web platform equipped with some tools. The documents are
associated with a semantic descriptions, and then are published in the P2P network.

The life of a community is not limited to indexing, publication and exchange of
resources such as documents. Other issues may concern the interests of the members,
the tools they use and the information exchanged among the members.

4.6.2 Community Resources

It is necessary to distinguish clearly between the categories of resources involved in
the system.

Definition 4.15. (Community resources)
We call Community resources the set of all kind of resources relating the life of

the community. It is the union of the subsets Documents and Core Resources.

Definition 4.16. (Documents)
Documents is the set of the resources shared by users through the Shared Memory

or stored in Personal Memory. Both memory indexes store entries containing pairs
(key, URL). In the shared memory, documents are accessed through their URL.

Definition 4.17. (Core Resources)
Core Resources is the set of the core elements of the System, consisting of the

ontologies used to create the keys of indexing, the elements bound to the community
such as Personal Notes and the Wiki of the Community where users can insert and
update information regarding the community in a collaborative way. People can

107



4 – Research

describe special events, add notes, etc. They must be accessible to all members. The
core elements of the System require their content be inserted into the distributed
index. In the Personal Memory the resources are stored in a local archive within
the peer.

We decided to deal in the same way with all Community resources, using the
same mechanism of indexing, publication and retrieval.

4.6.2.1 Documents

In our System, Documents are resources provided by users. For instance, the files
used in teaching course are the documents related to the same course. They are
contained in the Personal Memory of the owner or may be stored in the Shared
Memory if the user wishes to share them with the other members of the community.

4.6.2.2 Ontologies

Ontologies are used for creating the keys of indexing. We can find details in section
4.4.

Ontologies are published in the network. For publishing an ontology, a key of
indexing and a small additional description are required. The key of indexing is not
decided by users but it is assigned automatically by the System. The description
is the additional information integrated in the value of the index entry when the
ontology is published. It includes the application domain of the ontology, the set of
Entry Points, and the URI identifying the namespace name of the ontology.

Users have to retrieve ontologies when they start the system. They also have
to find a domain ontology that suits their needs. The System Ontology is used for
describing the Core Resources. The System Ontology is automatically published in
the system when the system bootstraps. The System Ontology is extended with the
definition of all resources included in the system.

A domain ontology is published with the key:

courier
Key:
{rdf:type, system:Ontology}

Its entire content is inserted in the DHT when the publication involves the Shared
Memory. As with other resources, the ontologies indexed in the Personal Memory
are stored in the file system of the user peer who owns the ontology. The index
entry stores the file name of the ontology.

4.6.2.3 Notes

A Note is a free text provided by a user to include additional information in the
System. The content of the Note may be any topic of interest for the user. The use

108



4.6 – Main notions about Community

of Notes is considered of general purpose because they can carry various information,
such as messages for other users, memos, comments on certain resources, etc.

An Note is published with the key:

courier
Key:
{rdf:type, system:Note}
{system:hasKeyword, <k>}

For allowing the users to distinguish among a wide amount of Notes, we choose
to allow to add keywords for indexing for a Note. The case of Indexing on a keyword
is the base case we use for indexing a Note. The key of indexing concerning a Note
contains the specific kind of document ({rdf:type, system:Note}).

The content of the Note is inserted in the DHT when the publication involves
the Shared Memory. The content of a note indexed in the Personal Memory is saved
within a file, stored within the file system of the user peer. The index entry stores
the file name of the note.

4.6.2.4 Wiki

The community is equipped with a unique space shared by all users. This role can
be identified in Wikis. A Wiki is a web site for creating and editing any number
of interlinked web pages via a web browser using a simplified language of markup
via an integrated text editor. In our System, the Wiki of the Community (hereafter
Wiki) is composed of only one physical document containing several pages that may
link to other resources, distributed in the P2P network.

A specific key gives access to the wiki. It is published with the key:

courier
Key:
{rdf:type, system:Wiki}

The Wiki is a document of the System. It is composed of a template file contain-
ing the skeleton of the Wiki with only the essential structure, without any content.
At the beginning, when a new community is created, the System starting from the
template, publishes the Wiki in the Shared Memory. The users of the community
may start to work on the shared Wiki, retrieving it from the network through the
key of research. Any modification on the Wiki are saved in the same file. The mod-
ified Wiki may be again published in the Shared Memory thanks to the embedded
functionalities.

In the Wiki, we have substituted the usual static reference links with semantic
links (described in section 4.6.4.3), representing the resources distributed in the P2P
network. Such resources are semantically indexed, through keys of indexing, and
are stored in the distributed index and then can be retrieved by the wiki thanks to
analogous requests.

109



4 – Research

We decided not to index the Wiki in the Personal Memory memory because the
wiki is a unique resource shared by all users an there is no need to keep other local
copies.

4.6.3 Semantic Desktop

We consider users of a community who share their own resources that provide cer-
tain semantic keys of indexing. They wish to retrieve the same resources or other
resources through keys of research created in the same way. They do not want to
deal with complicated tools or depend on centralized repositories. The resources
and their semantic indexing keys are published in the P2P network. Otherwise they
are stored in the Personal Memory if users decide to keep them for a private use.
Publication of semantically described document in P2P networks was presented as
a real challenge in [30]. Students and other teachers can discover the resources by
making queries based on the descriptions created through the use of ontologies. In
this scenario, the choice of the ontologies is fundamental and ontologies must be
shared with the community.

Our system allows to manage resources of various types, not necessarily textual.
Semantic annotations represent objective information about resources (nature, con-
cepts of scientific domain, etc.) but can also represent a point of view on documents
(difficulty level, usefulness in some context, etc.). Centralized memories may have
some disadvantages when they need to be filled up. A distributed system like this
could be a solution to this issue.

The resources of our system are considered partly like in the Gnowsis System
[88] where each resource is identified by a Uniform Resource Identifier (URI) and all
data is accessible and queryable as an RDF graph. In order to create a network of
users in the sense of community, in our opinion is necessary to create a platform as a
semantic desktop equipped with a set of tools at users’ disposal. Even Tim Berners
Lee did not really envision the World Wide Web as a hypertext delivery tool, but
as a tool to make people collaborate [31]. The users entry point to the system is a
Semantic Desktop (see figure 4.30), a Web-like shaped user interface resembling the
desktop of a traditional operating system.

110



4.6 – Main notions about Community

Figure 4.30. The Semantic Desktop

Figure 4.31. Use cases

The figure 4.31 shows the actions allowed to users within the Semantic Desk-
top. The actions concern the description of resources for their publication in the
Shared Memory and in the Personal Memory. For efficiently accessing the shared
and personal resources, ontologies used for indexing are shared by all members of the
community. Descriptions of local resources are created (Create a description), and
become useful when published (Choose a local resource) into the shared memory.
When the system starts the ontologies are discovered automatically. A user gets an

111



4 – Research

updated list of available ontologies and can select the ones needed (Select an ontol-
ogy). This tool also allows for an intuitive navigation inside ontologies and prepares
a semantic description of a resource in the background. Such descriptions must also
be used to retrieve relevant resources from both memories. The association between
a resource name and a description (Associate description to resource) launches the
indexing of the resource in the local memory (Store in personal memory) and/or
the publication in the shared memory (Share the classified resource).

4.6.4 Semantic Links

4.6.4.1 Traditional Web Pages

A Web page 3 is a resource of information that is suitable for the World Wide
Web and can be accessed through a web browser. This information is usually in
HTML or XHTML format, and may provide navigation to other web pages via
hypertext links (or hyper-links). An hyper-link is a reference or navigation element
in a document to another section of the same document or to another document
that may be on or part of a (different) domain. Web pages may be retrieved from
the local computer or from the remote web server. The web server may restrict
access only to a private network, e.g. a corporate intranet, or it may publish pages
on the World Wide Web. Web pages are requested and served from web servers
using Hypertext Transfer Protocol (HTTP). Web pages may consist of files of static
text stored within the web server’s file system (static web pages), or the web server
may construct the (X)HTML for each web page when it is requested by a browser
(dynamic web pages). Client-side scripting can make web pages more responsive to
user input once in the client browser.

Hypertext most often refers to text on a computer that will lead the user to
other, related information on demand. Hypertext overcomes some of the limitations
of written text. Rather than remaining static like traditional text, hypertext makes
possible a dynamic organization of information through links and connections (called
hyperlinks). Hypertext can be designed to perform various tasks; for instance when
a user ”clicks” on it or ”hovers” over it, a bubble with a word definition may appear,
a web page on a related subject may load, a video clip may run, or an application
may open.

4.6.4.2 Typed Links

”The Semantic Web isn’t just about putting data on the web. It is about making
links, so that a person or machine can explore the web of data. With linked data,
when you have some of it, you can find other, related, data” (Tim Berners-Lee)[11].

3http://en.wikipedia.org/wiki/Web page

112



4.6 – Main notions about Community

In Web pages a typed link is a link to another resource including more information
about the link. It is not only an indication of the existence of a resource, but a
typed link may also specify that the resource includes some characteristics such as,
for instance, be the substitute version for the resource in which the link occurs. User
agents, search engines, etc. may interpret the typed links in a variety of ways. For
instance, a user might acts in certain ways, such as searching only specific types of
links. It may also allow browsers or browsing software to pre-fetch linked resource
according to user needs.

Html 4 [29] supports typed links providing the rel (forward link) and rev (reverse
link) attributes in < link > and < a > tags. For instance, the line

< link rel=”index” href=”link A”>

means that the link A refers to a resource providing an index to the current
resource;

or the line

< link rel=”section” href=”link B”>

means that the link B refers to a document that serves as a section in a collection
of documents. The complete list of values for these attributes may be found in [29].

The rel and rev attributes play complementary roles: the rel attribute spec-
ifies a forward relationship and the rev attribute specifies a reverse relationship.
Considering two documents A and B, the following meanings are equivalent:

Document A: <link rel=”. . . ” href=”doc B” >

Document B: <link rev=”. . . ” href=”doc A” >

Browsers do not use these attributes but search engines may benefit from typed
links in getting more information about a link.

4.6.4.3 Distributed Semantic Links

Definition 4.18. (Semantic Link)
We call Semantic Link the link contained in a Web page that links to other

resources that may be a Web page or other resources such as documents, videos,
etc. The link is semantically described and a key is created for its indexing.

For instance, the line

<link onClick=”computeSemanticLink(key)” >

113



4 – Research

Figure 4.32. Distributed Links

refers to a Semantic Link identified through the key of indexing key. For deter-
mining the resource addressed by the key, the JavaScript function computeSeman-
ticLink(key) is evoked.

<script type=”text/javascript”>
function computeSemanticLink(key) {
. . .

}
</script>

The onclick attribute of the HTML <link> tag allows to capture the event that
occurs when the pointing device button is clicked over the link in the Web page.

In our system we consider web pages as shared resources. Web pages are reach-
able through their URLs. We choose to publish them in the DHT by a key of
indexing. A web page can link other pages, through hyper-links, that are also con-
sidered shared resources identified by a key of indexing and an URL.

Definition 4.19. (Distributed Semantic Link)
We call Distributed Semantic Link the link contained in a Web page that links

to another resource. The link is semantically described and a key of indexing is
created for its publication in the DHT.

To retrieve linked resources, the system uses the key of indexing for making
queries.

In figure 4.33 a Web Page is a resource published in the system through some
keys. The Web Page is physically stored within the Peer s. The Web Page refer
to two resources via Link 1 and Link 2. The Link 1 is published under the Key
1 and is stored within the Peer x, whereas the Link 2 is addressed by the Key 2
and is stored within the Peer y. These keys are used by the system do discover the
resources related to the two links.

114



4.6 – Main notions about Community

Figure 4.33. Distributed Semantic Links

The advantages of such application is that resources are always scattered on the
network. Of course this is one of the benefits of the P2P paradigm. Moreover, as the
same key of indexing may address more than one resource, a link could address more
resources. The number of addressed resources is dynamic because the activities of
indexing and publishing made by users of the community make the Shared Memory
grow.

115



4 – Research

116



Chapter 5

Implementation

This chapter describes the architecture and the implementation of the System. First,
an overview of the System is given. Then the design of the proposed architecture and
its three component layers, Front-end, Services and Function, are introduced. The
development is described in detail in order to explain the choices for the component
parts. The chapter ends with a discussion of some ideas for future development.

5.1 System Overview

In this chapter we describe the architecture and the development of the System
that we designed for simplifying the indexing and the sharing of resources. The
system is depicted in figure 5.1. The activities of a P2P network take place on the
Internet (shown in the middle of the figure). People are grouped into communities in
which members are connected to each other by the same motivation to communicate,
collaborate and share their interests. Users are interested in maintaining beneficial
contacts with other members and in sharing real and useful resources that concern
the whole community.

5.1.1 Community

The community (outlined in figure 5.2) is the point of aggregation of users who share
interests and/or activities. In our case, this community is intended as a distributed
network of users. The resources shared within the community are contained within
a shared memory. In the context of the community, the meaning of the memory is
abstract. It represents the wide archive of knowledge that is owned by the commu-
nity members. Such knowledge can be either private or shared by all users. The
memory is the space where everybody can store resources. Users have to query an
index to find the resources in that interest them.

117



5 – Implementation

Figure 5.1. System Overview

Figure 5.2. The Community

Each user takes part of the community through a user peer that constitutes the
user entry point in the system. The user peer provides a User Interface that can be
accessed from anywhere in the Internet. It ensures users the necessary facilities for
participating in the community.

118



5.1 – System Overview

5.1.2 User Peer

The user peer is the entry point in the system. The user accesses the system and
interacts with it by means of tools included in the graphical user interface (designed
as a Web application). The user peer is shown in figures 5.3 and 5.4. A user may
interact with the system for:

• indexing resources;

• sharing resources;

• searching resources.

The tools are intended mostly for resource management and interaction with
the private and the shared memory. The peer physically stores the resources in the
private and shared memories. The shared resources are stored in a public area and
are available via a local web server, as it is common with resources accessed on the
Web.

119



5 – Implementation

Figure 5.3. The user peer

Figure 5.4. Features of the user peer

Each user peer owns amemory that contains a private part for archiving personal
resources. The memory also contains a public part that stores those documents
that are shared with all members of the community. The memory (see figure 5.5)
is divided in two parts: the Personal Memory and the Shared Memory. The former
stores resources that a user keeps in the private archive. Depending on the user’s
intention, some of these resources can also be published in the Shared Memory. The
Shared Memory contains the resources that each user has published in the network.
The abstract concept of Community Memory corresponds to the union of all shared

120



5.1 – System Overview

memories of all the peers. Even if we distinguish between local and distributed
indices, both memories are managed by the same mechanism of indexing. In the
Shared Memory, a resource is accessed either through its URL or through its entire
data content. The resources contained in the Personal Memory are stored in a local
archive within the peer. In this memory, resources may be files or Notes. Resources
stored as files are accessed through their reference in the local file system.

The shared memory is the part of the system that is accessible by all users. The
users can discover and retrieve resources that interest them.

Figure 5.5. The Memory

The user peer, as part of a P2P community, contains a quota of the whole
distributed index. Performance of the P2P infrastructure guarantees the availability
of the distributed index. Resource parts of the private memory are indexed with
another index stored locally.

The index is the part of the community that contains the information that
semantically describes the resources (the keys of indexing) and their physical links.
Given a key of indexing, the information necessary for accessing associated resources
can be retrieved from the index. Unique mechanisms of indexing are used for local
resources and for the resources shared by the community. Therefore, in the system
we distinguish between a Local Index and a Distributed Index. The Local Index refers
the resources kept private by users. The Distributed Index concerns shared resources
and is distributed via a data structure called DHT. In figure 5.6 the indexes are part
of each peer who belong to the community.

121



5 – Implementation

Figure 5.6. The indexes

Relationships between Memory, Index and Community are shown in figure 5.7.

Figure 5.7. Relations among Memory, Index and Community

122



5.1 – System Overview

See figure 5.8 for connections between Memory, User Peer and Index.

Figure 5.8. Relations among User, Memory and Index

All users may participate in the community by using a user peer.

123



5 – Implementation

5.1.3 Joining the Community

A new user who is interested in the community, has to join the network and become
a member of the network of peers (see figure 5.9).

Figure 5.9. Relations between User Peer and Community

There are several ways to join a P2P network and many aspects have to be
considered:

• a peer needs to know at least one neighbour (current member); each peer owns
a personal list of neighbours;

• the list of neighbours or most reliable peers may dynamically change as the
network changes; a broadcasting message for the discovery of most reliable
peers may be sent through the network;

• web cache: there is at least one reliable on-line repository of IP addresses of
alive peers.

In our system, a new peer reads a list of likely candidate neighbours. The list
contains references to other peers in the network who may be alive, and make it
possible for the new peer to join the network.

124



5.2 – Architecture

5.2 Architecture

The user peer is a system that is composed of three layers, called Front-end, Ser-
vices and Function (see figure 5.10). Its design follows the logical separation of
presentation, application processing and data management.

The low level layer (Function) is composed of three modules: the Ontology mod-
ule, the P2P module and the Memory module.

Figure 5.10. The System Architecture

The Ontology module is concerned with the management of ontologies and in-
dexing patterns. The P2P module provides functionalities for accessing the network
of peers. It constitutes the infrastructure of the system in which the community of
users is scattered in a P2P network. The P2P network is composed of atomic ele-
ments called peers (or nodes). The P2P Area is an atomic element of the network
that allows both publishing and retrieving actions on the distributed index. On
the network side, the chosen technology is built on Pastry, a generic, scalable and
efficient substrate for P2P applications. We use FreePastry1 [82], the open-source
implementation of Pastry. Its features allow for adapting the network to the spe-
cific needs. The Memory module is concerned with indexing and storing of resources
within personal and shared memories. It focuses on physically storing and retrieving
the resources within the two memories: the Personal Memory for local repository of
resources and the Shared Memory for resources shared by the users in the network.

1http://www.freepastry.org/

125



5 – Implementation

The Services layer is composed of an extensible set of web services. The set
of web services provides an integration substrate, giving access to the features of
the nodes of the P2P module and the features of the Memory module and the
Ontology module. The capabilities of the system are based on the SOA (Service
Oriented Architecture) design principles [2] and each capacity is implemented as a
web service, exploiting the features of the REST [35] paradigm. Such layers are
designed to interconnect the Front-end layer and the low level part of the system.
The system is extensible, so that it is easy to implement new capabilities by providing
new web services.

The Front-end layer provides the user interface that allows users to interact with
the system. The global concept of the Front-end is a Web interface that guarantees
an access to the system anywhere and any time. The Web interface is designed to
resemble a desktop of a traditional operating system. It is equipped with a set of
Tools for implementing all features of the user interface. It allows a user to choose
ontologies, select resources, create keys of indexing, publish and search resources,
etc. It is extensible and allows improving the desktop with new applications for
different purposes. The user interface is developed through the web technologies
HTML, JavaScript, CSS, and is animated with AJAX techniques. We have based
all these features on the ExtJs2 JavaScript library. Each node of the community is
associated with one Web interface. The user can access the system through such a
Web interface. There are no constraints on connecting the system with a specific
one. The system can be accessed from the Web interface of any peer. We have
designed a Web application in order to provide a cross-platform solution with no
requirements of specific installations. Such interface is designed as a set of views on
tools and looks like a Semantic Desktop.

2http://www.sencha.com/products/js/

126



5.3 – Function Layer

5.3 Function Layer

The Function layer is composed of the modules Ontology, P2P and Memory. Each
of these modules are represented, in the next pictures, with UML packages.

5.3.1 Ontology

The Ontology module concerns two aspects: i) the management of the ontologies;
ii) the management of the indexing patterns. These two aspects are strictly related
because the indexing patterns are based on the ontologies available in the System.
In figure 5.11, the ontology package contains the class diagram relative to the im-
plementation of the Ontology module.

Figure 5.11. Class diagram of the ontology package

The ontologies used by the System are published in the Shared Memory. They
have to be discovered and collected before their use. The class OntologyManager is in
charge of the management of the ontologies. The method discoverOntologies() allows
to search the ontologies and to collect them in the peer. The retrieved ontologies
are represented through the class of type Ontologies.

127



5 – Implementation

The patterns are defined in the file patterns.xml contained in the folder pat-
terns. The file server.properties contains the configuration properties that fix these
parameters.

. . .

patterns_directory_name=patterns

patterns_archive_name=patterns.xml

. . .

server.properties

The class PatternsManager provides the functionalities for the management of
the patterns. The method loadPatterns() loads the patterns from the XML file.
During the indexing activities, at each step, it is necessary to run a SPARLQ query.
The class PatternsManager provides the method execQuery(...) for running a query.
The query is then sent to the class OntologyManager.

128



5.3 – Function Layer

The patterns are structured as follows:

<patterns>

<pattern>

<id> . . . </id>

<name> . . . </name>

<description> . . . </description>

<descriptiontemplate>

. . .

</descriptiontemplate>

<userprocess>

. . .

</userprocess>

<algorithm>

. . .

</algorithm>

</pattern>

<pattern>

. . .

</pattern>

. . .

</patterns>

The id is a unique identifier that distinguishes each pattern; the name is the
string used to label the pattern; the description is a string that briefly describes the
pattern. The description template, the user process and the algorithm, are defined
as explained in section 4.5. Let’s consider, for instance, the case of the indexing
pattern on a concept (detailed in section 4.5.3).

129



5 – Implementation

The part corresponding to the description template contains the set of descrip-
tions defined by the patterns. It is extended with parameters.

. . .

<descriptiontemplate>

Individual: _:d

Types: system:Document

Facts: system:hasInterest <C>

</descriptiontemplate>

. . .

The user process is composed of an ontology choice, iterative queries and assign-
ments. Ontology choice concerns users’ choices of the ontology of domain for index-
ing. The iterative queries are SPARQL queries that the System runs for proposing
the elements of the ontology necessary at the current step of the user process. The
assignments are the choices users perform upon the proposed elements of the ontol-
ogy. The assignments are used for fixing the parameters of the description template.

. . .

<userprocess>

o_id = userOntologyChoice()

<step id="0">

SELECT ?cl

WHERE { ?cl rdf:type owl:Class .}

</step>

C = user(res(S))

</userprocess>

. . .

o
n
to
lo
gy

ch
o
ic
e

it
er
a
ti
ve

qu
er
y

a
ss
ig
n
m
en

t

The algorithm is composed of the pseudo-code used in the procedure that creates
the keys of indexing.

. . .

<algorithm>

Key = {rdf : type,system : Document}

append to Key {system : hasInterest,C}

</algorithm>

. . .

130



5.3 – Function Layer

5.3.2 P2P

The P2P module provides functionalities for managing the infrastructure of Peers
in the community. Its main implementation classes are under the package p2parea,
depicted in the diagram of figure 5.12. The package is linked to three other packages:
sharedmemory, used for indexing and storing of resources within the shared memory,
services, used the web services that exploit the features of peers, and freepastry, that
belongs to the FreePastry library and provides various low level functionalities of
the P2P infrastructure.

Figure 5.12. Class diagram of the p2parea and other linked packages

The main features of this layer are:

• to bootstrap a node;

• to manage the operations of publishing and retrieving within the distributed
index.

A user interacts with the system through his or her user interface. The user
interface (described in section 5.5) links the corresponding running node of the P2P

131



5 – Implementation

network and accesses the node’s features through the Services layer (represented by
the services package in figure 5.12). When a node runs, it links to other nodes of the
P2P network. This step of a node’s life is called bootstrapping. For bootstrapping,
a node of the P2P network must know the existence of at least one other node,
otherwise it cannot bootstrap or it is the first node of a new P2P network. For
simplicity, let’s imagine that we have a network composed of two nodes, A and B.
The first time, the network is empty and no nodes are running. Node A starts and
constitutes the first element of the P2P network. Node A is distinguished by its IP
address, ipA, and its port, portA. When node B starts, it has to link to another
node. Only one other node, node A is running, so node B starts because it knows
the existence of the node A, namely ipA and portA. Node B joins the P2P network
and is distinguished by its IP address, ipB, and its port portB.

The class PASTNode is created for bootstrapping a node and for performing
publication and search on it. For bootstrapping, a PASTNode is fed the information
of neighbours (IP and port), provided by the user interface through the tool called
P2P Connection (further described in section ??). If the link to the provided node
is not possible, the PASTNode tries to link to one of the nodes with the given (IP
an port) contained in the file neighbour.list. This file is part of the system. It is
created manually at administrative level and provides a list of available nodes. The
list is a collection of (IP, port) couples:

192.168.0.2, 4422

IP2, port2

IP3, port3
. . .

neighbours.list

The PASTNode bootstraps through the method bootstrap(...).

The user operates through the user interface that runs on all types of web
browsers. The running peer, represented by an instance of a PASTNod, may be
reached via the user interface at any time. The user interface is able to know the
status of the corresponding peer because the PASTNode provides the status infor-
mation represented by the class ConnectionStatus. This class contains information
concerning the success of a bootstrapping, the possibility of managing an already
alive node (that has been started before), the information concerning IPs and ports.
This information is used through the Services layer.

For publishing an entry in the DHT, the PASTNode provides the method put(...).
The method gets the key of indexing and the value corresponding to the resource
to index. The key is transformed to an hash code, as required by the FreePastry
library. The process of publication progresses through the classes belonging to the
FreePastry library.

132



5.3 – Function Layer

For retrieving a resource, given a key of research, the PASTNode provides the
method get(...). This method gets the key of research and an object of type Con-
tinuation. For searching within a P2P network, it is necessary to run a query and
to wait for the result, because they have to cross through some peers of the P2P
network. The response to a query is not returned immediately. A Continuation
is a listener (provided by the FreePastry library) on the conclusion of the opera-
tion of research in the network. When a response is available, the object of type
Continuation is alerted and the returned data can be exploited.

Sometimes it may be necessary to disconnect the PASTNode, mainly for joining
another peer in the P2P network. The disconnection is performed through the
method disconnect().

133



5 – Implementation

5.3.3 Memory

The memory module provides functionalities for storing and retrieving resources
within the two memories. It is managed by two main packages: sharedmemory and
personalmemory. Functionalities common to the two main packages are included in
the package memorycommon.

5.3.3.1 Shared Memory

The sharedmemory package (see figure 5.13) contains classes for acting on the Shared
Memory. The class SharedMemoryManager links the p2parea package for performing
storage and retrieval of the Distributed Index. Its constructor gets an instance of
the already created PASTNode that performs linking to the P2P network by the
SharedMemoryManager class.

The SharedMemoryManager provides two main functionalities: publication and
retrieval within the Shared Memory.

Figure 5.13. Class diagram of the sharedmemory package

Publishing a resource in the shared memory includes two activities:

• putting the entry related to the resource in the distributed index;

• physically saving the resource related to the entry in a peer’s local archive.

134



5.3 – Function Layer

The entry related to a resource to be published contains the key of indexing
created for the resource. The key distinguishes between different types of resources
or documents of core elements (ontologies, notes, wiki). For putting the entry in the
distributed index, it is necessary to invoke the method publish(...) with the related
key of indexing and the corresponding value.

The peer provides a temporary directory where the files corresponding to the re-
sources to be published are saved before their publishing in the Shared Memory. The
file server.properties contains the configuration properties that fix these parameters.
The property uploads directory name corresponds to the temporary directory.

. . .

shared_repository=docroot/sharedmemory

uploads_direcory_name=documents

personal_memory_directory_name=docroot/personalmemory

personal_memory_archive_name=personalmemory.info

. . .

server.properties

If the resource is a document, the value is the reference of the resource in the
local file system.

entry: (key, ”/documents/file.ext”)

For publishing the resource, it is necessary to copy the resource in the public
folder of the peer (fixed by the property shared repository in the property file). This
is the folder where the local HTTP server gives access to shared resource. Before
storing the entry, the value is substituted with the link to the local HTTP server.

entry: (key, ”http://<url of the peer http server>/sharedmemory/file.ext”)

If the resource is a core element, the value of the entry contains the entire resource
content. For instance if the resource is a Note, the entry could be:

entry: (key, ”Note content ...”)

The wiki is a particular case because it is published only once at the adminis-
tration level. No other activities of publishing are provided in this implementation
of the system. The system allows to retrieve the wiki providing its specific key of
research. Modifications in the wiki are possible by embedded functionalities.

For searching a resource with the key of research, the class SharedMemoryMan-
ager provides the method search(...). This method gets the key of research and
the Continuation as listener. The package sharedmemory defines a custom Con-
tinuation called SharedMemoryContinuation. The process of searching is redirected

135



5 – Implementation

to the instance of PASTNode. When the process is completed, the SharedMemo-
ryContinuation is alerted through the method receiveResult(). Results are arranged
within the data structure result of type MemoryResult. The results corresponding
to each query are distinguished by the key of research. For exploiting the received
data, it is necessary to invoke the method getResult().

5.3.3.2 Personal Memory

The Personal Memory consits of a local index and a local repository. The local
index is a file, local to the peer, that saves entries of the (key, value) type that
correspond to the resources indexed by users in the Personal Memory. The local
repository is the folder where the indexed resources are stored within the peer. The
class PersonalMemoryManager manages the operations of storing and retrieving of
resources within the Personal Memory.

Figure 5.14. Class diagram of the personalmemory package

The configuration file server.properties fixes the parameters of the Personal Mem-
ory. The name of the local index file is given by the property personal memory archive name
(personalmemory.info). The local repository is stored in the folder docroot/personalmemory ;
its name is given by the property
personal memory directory name.

The Personal Memory is intended to contain resources of type Document or
Notes. Even if there are no restrictions for storing other kinds of core element
resources, we choose not to manage these kinds of resources in the Personal Memory.

136



5.3 – Function Layer

For publishing a resource in the Personal Memory it is necessary to invoke the
method publish(...) of the PersonalMemoryManager and give the related key of
indexing and the corresponding value.

The content of the personalmemory.info file is composed of an undefined set of
lines, where each line corresponds to an entry of the local index.

key1, http://<url of the peer http server>/personalmemory/file1.ext

key2, http://<url of the peer http server>/personalmemory/file2.ext

key3, "some content for a Note."

. . .

personalmemory.info

The value of an entry can be of two kinds: a content of a Note, or a reference
to the file, if the resource is a document. The file is copied in the folder dedicated
to the Personal Memory, in the local HTTP server, and it is accessed through its
URL.

For searching a resource with a key of research, it is necessary to call the method
search(...). The process of research is accomplished simply by scanning the list of
entries contained in the personalmemory.info file, and verifying a match between
the key of research and the key of each entry. The result of searching are given
through the object MemoryResult.

137



5 – Implementation

5.4 Services Layer

The Services Layer gives access to the functionalities of the underlying modules of
the system through Web Services. The services package (see figure 5.15) contains
the classes corresponding to four Web Services that implement the functionalities of
the Services layer. It is divided into:

• P2PWS, that interacts with the P2P layer;

• PersonalMemoryWS, that gives access to the Personal Memory;

• SharedMemoryWS, that gives access to the Shared Memory

• OntologyWS, that relates the Ontologies and the Patterns defined in the Sys-
tem.

Figure 5.15. Class diagram of the services package

Web Services are designed following the REST (REpresentational State Transfer)
architecture style. These Web Services are called RESTFul. The basic element of a
Web Service is the resource (any information on the server side), intended as any item
of interest. RESTful web services use HTTP protocol methods for the operations
they perform. Table 5.1 shows the methods and their meanings. Resources can be
accessed by clients using web URIs and HTTP:

http://www.utc.fr/resource/

138



5.4 – Services Layer

Table 5.1. HTTP methods and the operations they perform

HTTP method Operation

GET Get a resource

POST Create a resource

PUT Update a resource

DELETE Delete a resource

A representation of the resource is returned and the representation puts the
client application into some state. The result of a new request by the client pro-
duces a new representation that places the client into yet another state. Thus,
the client changes (transfers) a state with each resource representation. In our
system RESTFul Web Services are developed through the JAX-RS Java API [20].
A RESTFul Web Service is associated to a resource class (a Java Class) using the
@Path annotation (for Specification see [43]). The Web Service accessed by the URL
http://www.utc.fr/resource/ is associated to a class with the following annotation:

@Path(”/resource”)

The value of the annotation can have a relative URI path template in curly
braces {...}. A URI path template acts as a placeholder for a relative path URI.
Generally it is a string with zero or more embedded parameters in it, and it forms
a valid URI path when the values are applied for the parameters. For instance, the
path:

@Path(”/resource/{id}”)

could identify a resource accessible through the URL:

http://www.utc.fr/resource/53

intended as a request for a resource identified by the id number 53.
Returned resource of Web Services, available in our system, are represented in

JSON 3 format. JSON (JavaScript Object Notation) is a data format for interchange
within client-server applications. It is a text format that is completely language
independent. JSON data are expressed as collections of (name,value) pairs, or as
ordered list of values. The following is an example representing a group of students:

3http://www.json.org

139



5 – Implementation

{

”type”: ”group”,

”value”: ”students”,

”items”: [

{”name”: ”Giovanni”, ”age”: ”23”},

{”name”: ”Luca”, ”age”: ”22”},

{”name”: ”Matteo”, ”age”: ”25”}

]

}

5.4.1 P2PWS

Connections to the P2P network are performed through the P2PWS Web Service as
links to the P2P layer. They are used by the peer of the P2P network to join/leave
the network and to publish/search in the distributed index. User interaction is
based on a Web user interface provided by a specific peer. The user can interact
with the same peer any time from a Web browser located in any computer that is
connected to Internet. A peer may be both connected to and disconnected from
the P2P network. From the Web user interface, the user can connect to the P2P
network by joining a peer that is already alive. It can be disconnected from a dead
or corrupted peer and then connected again to another peer. The user is allowed to
verify the status of an established connection. The resource class of the P2PWS is
services.P2PWS associated to the path /p2p.

Resource Class services.P2PWS
Path @Path(”/p2p”)

P2PWS Web Service is a container resource of three sub-resources: bootstrap,
status, disconnect.

5.4.1.1 Bootstrap

For bootstrapping a node, the P2PWS Web Service provides a sub-resource that is
accessible through the relative URI path template:

/p2p/bootstrap/{local port}/{neighbour ip} /{neighbour port}

The table 5.2 provides the details concerning the bootstrap sub-resource. The
URL necessary for accessing the web service is in the form:

140



5.4 – Services Layer

http://www.utc.fr/p2p/bootstrap/4422 /192.168.0.3/2244

The parameters given in the URL are mapped to local variables of the class
services.P2PWS.

The Web Service returns a JSON object that represents the status of the es-
tablished connection or the failure message via the ”success”, ”no” parameter. For
creating the returned response, the system performs a transformation of an object
of type p2parea.ConnectionStatus to a JSON text representation.

Table 5.2. Details of the Bootstrap sub-resource

Path @Path(”/p2p/bootstrap/{local port}/{neighbour ip}
/{neighbour port}”)

URL http://<host>:<port>/p2p/bootstrap/<local port>
/<neighbour ip>/<neighbour port>

Method POST
Params @QueryParam(”local port”) String local port,

@QueryParam(”neighbour ip”) String neighbour ip,
@QueryParam(”neighbour port”) String neighbour port,

Return {
”success” : ”yes”, // [yes, no]
”new ring” : ”no”, // [yes, no]
”node ip” : ”...”,
”node port” : ”...”,
”node id” : ”...”,
”already alive” : ”...”, // [yes, no]
”neighbour ip” : ”...”,
”neighbour port” : ”...”
}

The returned JSON object consists of:

• success, of the bootstrap operation;

• new ring, if the node is the first node a new P2P network;

• node ip, the IP address of the node;

• node port, the port of the node;

• node id, the id of the node; it is necessary in case of the disconnection is
requested;

141



5 – Implementation

• already alive, in the case that the node has been bootstrapped before;

• neighbour ip, the IP address of the neighbour node;

• neighbour port, the port of the neighbour node.

142



5.4 – Services Layer

5.4.1.2 Status

The peer is accessible by users at any time through any Web browser. When the
peer is reached, the system verifies whether the P2P node is already connected to
the P2P network of the community. For that, the P2PWS Web Service provides the
sub-resource represented by the path template

/p2p/status

(see details in table 5.3). The Web Service returns the status of the actual
connection. If no connections is established, the user may decide to connect to the
P2P network through the P2PWS Web Service.

Table 5.3. Details of the Status sub-resource

Path @Path(”/p2p/status”)
URL http://<host>:<port>/p2p/status

Method GET
Params none
Return {

”success” : ”yes”, // [yes, no]
”new ring” : ”no”, // [yes, no]
”node ip” : ”...”,
”node port” : ”...”,
”node id” : ”...”,
”already alive” : ”...”, // [yes, no]
”neighbour ip” : ”...”,
”neighbour port” : ”...”
}

143



5 – Implementation

5.4.1.3 Disconnect

For disconnecting a peer, the P2PWS Web Service provides the sub-resource Dis-
connect (detail in table 5.4). The information necessary for disconnecting a peer is
its node id. This information is provided when the peer has been bootstrapped, or
when the status is requested.

Table 5.4. Details of the Disconnect sub-resource

Path @Path(”/p2p/disconnect/{node id}”)
URL http://<host>:<port>/p2p/disconnect/<node id >

Method PUT
Params @QueryParam(”node id”) String node id,
Return {

”success” : ”yes” // [yes, no]
}

144



5.4 – Services Layer

5.4.2 PersonalMemoryWS

The Personal Memory Web Service manages the operations of indexing, storing and
retrieving in the personal memory. The content of the memory is stored locally in
the peer. The index is contained in the file personalmemory.info. The archive of file
resources is archived in the folder personalmemory.

Resource Class services.PersonalMemoryWS
Path @Path(”/personalmemory”)

The PersonalMemoryWS contains three sub-resources: publish, search and reload.

5.4.2.1 Publish

For publishing in the Personal Memory, the PersonalMemoryWS Web Service pro-
vides the sub-resource accessible through the relative URI path template

/personalmemory/publish

The data required for publishing are the key and the value that correspond to
the entry to be published. The returned JSON object reports the success or failure
information of the operation of publishing.

Table 5.5. Details of the Publish sub-resource

PATH @Path(”/personalmemory/publish”)
URL http://<host>:<port>/personalmemory/publish

Method POST
Params @FormParam(”key”) String key

@FormParam(”value”) String value
Return {

”success” : ”yes” // [yes, no]
}

145



5 – Implementation

5.4.2.2 Search

For searching it is necessary to provide the key of research. The relative URI path
template

/personalmemory/search/{key}

requires to input the key when the PersonalMemoryWS Web Service is invoked
for searching. The returned information is in the form of JSON data. The Web
Service returns some information on the status of the research and, in case of success,
the list of (key, value) pairs that correspond to the key of research. The key contained
in the returned pairs cannot be equal to the key of research for the reason related
to the key extension.

Table 5.6. Details of the Search sub-resource

PATH @Path(”/personalmemory/search/{key}”)
URL http://<host>:<port>/personalmemory/search/<key >

Method GET
Params @QueryParam(”key”) String key
Return {

success: ”true”, // [yes, no]
id: ””, //not used
message: ””, //in event of error
results: [
{ ”key”: ”. . . ” , ”value”: ”. . . ”},
{ ”key”: ”. . . ” , ”value”: ”. . . ”}
. . .

]
}

146



5.4 – Services Layer

5.4.2.3 Reload

Sometimes it is useful to get the list of all data archived in the local index. The
PersonalMemoryWS Web Service provides the relative URI path template

/personalmemory/reload

The returned information is the entire content of the local index.

Table 5.7. Details of the Reload sub-resource

PATH @Path(”/personalmemory/reload”)
URL http://<host>:<port>/personalmemory/reload

Method GET
Params none
Return {

success: ”true”, // [yes, no]
id: ””, //not used
message: ””, //in event of error
results: [
{ ”key”: ”. . . ” , ”value”: ”. . . ”},
{ ”key”: ”. . . ” , ”value”: ”. . . ”}
. . .

]
}

147



5 – Implementation

5.4.3 SharedMemoryWS

The Shared Memory Web Service manages the operations of indexing, storing and
retrieving in the shared memory. The distributed index is scattered in the P2P
network within a DHT.

Resource Class services.SharedMemoryWS
Path @Path(”/sharedmemory”)

The SharedMemoryWS contains three sub-resources: publish, search and getre-
sults.

5.4.3.1 Publish

For publishing in the Shared Memory, the SharedMemoryWS Web Service provides
a sub-resource accessible through the relative URI path template

/sharedmemory/publish

The required data are the key and the value that correspond to the entry to be
published. The returned JSON object reports the success or failure information of
the operation of publishing.

Table 5.8. Details of the Publish sub-resource

PATH @Path(”/sharedmemory/publish”)
URL http://<host>:<port>/sharedmemory/publish

Method POST
Params @FormParam(”key”) String key

@FormParam(”value”) String value
Return {

”success” : ”yes” // [yes, no]
}

148



5.4 – Services Layer

5.4.3.2 Search

For searching it is necessary to provide the key of research. The relative URI path
template

/sharedmemory/search/key

requires to input the key when the SharedMemoryWS Web Service is invoked
for searching. The process of research within the distributed index is related to the
P2P network. The results of such a operation are not immediately available because
messages are propagated along several peers of the network. For that reason, the
SharedMemoryWS Web Service does not return any data of the index but only an
id as an identifier of the invoked operation of searching. The id is unique for each
operation. It is used successively for requesting retrieved results.

Table 5.9. Details of the Search sub-resource

PATH @Path(”/sharedmemory/search/{key}”)
URL http://<host>:<port>/sharedmemory/search/<key >

Method GET
Params @QueryParam(”key”) String key
Return {

success: ”true”, // [yes, no]
id: ”id 1255680347670”,
message: ”” //in event of error

}

149



5 – Implementation

5.4.3.3 Get results

The retrieved results of a search operation can be requested from the SharedMem-
oryWS Web Service through the sub-resource with the relative URI path template

/sharedmemory/getresults/{id}

It is necessary to provide the id of a search operation invoked before. The Web
Service returns some information concerning the status of the research and, in case
of success, the list of (key, value) pairs that correspond to the key of research. The
key contained in the returned pairs cannot be equal to the key of research for the
reasons related to the key extension.

Table 5.10. Details of the Ger Results sub-resource

PATH @Path(”/sharedmemory/getresults/{id}”)
URL http://<host>:<port>/sharedmemorymemory/getresults

/<id >
Method GET
Params @QueryParam(”id”) String id
Return {

success: ”true”, // [yes, no]
id: ””,
message: ””, //in event of error
results: [
{ ”key”: ”. . . ” , ”value”: ”. . . ”},
{ ”key”: ”. . . ” , ”value”: ”. . . ”}
. . .

]
}

150



5.4 – Services Layer

5.4.4 OntologyWS

The OntologyWS Web Service allows users to access the functionalities of the On-
tology module. It is linked to the classes OntologyManager and PatternsManager.
The main features it provides concer the patterns defined in the System and the
operations on the ontologies available for creating the keys of indexing. The pat-
terns are shown to users thorough the Web user interface. Each pattern proposes a
sequence of steps that the user can follow for creating the keys of indexing. At each
step the OntologyWS Web Service runs a query, through the OntologyManager, for
collecting the ontology elements required for the specific step.

Resource Class services.OntologyWS
Path @Path(”/ontology”)

The OntologyWS Web Service is a container resource of two sub-resources: load
and query.

151



5 – Implementation

5.4.4.1 Load

For loading the indexing patterns defined in the System, the OntologyWS Web
Service provides the sub-resource accessible through the relative URI path template

/ontology/load

The web service returns a JSON formatted data containing the set of indexing
patterns, structured as follows:

• id, a unique identifier that distinguishes the pattern;

• name, the string used to label the pattern;

• description, a brief descriptive statement for the pattern;

• descriptiontemplate, contains the set of descriptions defined by the pattern;

• userprocess, defines the process of interaction with the user;

• algorithm, the pseudo-code used for creating the keys of indexing.

152



5.4 – Services Layer

Table 5.11. Details of the Load sub-resource

PATH @Path(”/ontology/load”)
URL http://<host>:<port>/ontology/load

Method GET
Params none
Return {

”patterns”: [
{

”id”: ””,
”name”: ””,
”description”: ””,
”descriptiontemplate”: ””,
”userprocess”: ””,
”algorithm”: ””

},
{

. . .
}

]
}

5.4.4.2 Query

An indexing pattern is articulated in several steps. At each step, the System collects
from the chosen ontology the parts that are necessary to users for selecting an
ontological element related to the current step. User’s selections are required at
each step for the following step to happen. For querying the chosen ontology at each
step of the indexing pattern, the OntologyWS Web Service defines a sub-resource
relative to the URI path template

/ontology/query/{pattern id}/{step}/{ontology id}/{query}

To invoke such a sub-resource it is necessary to provide the following parameters:

• pattern id, the identifier of the indexing pattern;

• step, the number of the step;

• ontology id, the identifier of the chosen ontology;

153



5 – Implementation

• query, the SPARQL query to execute.

The web service returns a JSON object that contains the success and message
information. The results are returned as a set of items with the name of the variable
in the SPARQL query and the relative values.

154



5.4 – Services Layer

Table 5.12. Details of the Query sub-resource

PATH @Path(”/ontology/query/{pattern id}/{step}
/{ontology id}/{query}”)

URL http://<host>:<port>/ontology/query/<pattern id>/
<step>/<ontology id >/<query>

Method GET
Params @QueryParam(”pattern id”) String pattern id

@QueryParam(”step”) String step
Params @QueryParam(”ontology id”) String ontology id
Params @QueryParam(”query”) String query
Return {

success: ”yes”, // [yes, no]
message: ””, //in event of error
results: {

”head”: {
”vars”: [ ”cl”, ...]

},
”items”: [
{

”cl”: { ”type”: ”...”, ”value”: ”...”},
. . .

}
]

}
}

155



5 – Implementation

5.5 Front-end Layer

The Front-end layer provides the Web User Interface that allows users to interact
with the system. The figure 5.16 shows the diagram of the Front-end module,
containing the development of this layer.

Figure 5.16. The diagram of the Front-end

The package userinterface contains the main HTML file client.html. It defines
the design of the Web User Interface (hereafter UI) and is based on mixing the
technologies HTML, JavaScript and CSS. The package links the JavaScript library
ExtJs2, included in the package extjs. The file client.html needs a set of external
JavaScript files defined in the package tools. This package contains the tools used
within the UI. Such tools implement the several functionalities of the UI. The file
client.html also requires the file client.conf containing the configuration settings.

156



5.5 – Front-end Layer

5.5.1 User Interface

The UI is reachable through the URL referred to the peer where it is installed. For
instance the following URL refers to a UI:

http://ndadmz.crs4.it:8080/client.html

(a)

(b)

Figure 5.17. The Web user interface

The UI is created in the shape of a traditional Desktop of an Operating System
(see figure 5.17 (a)). It contains a set of icons corresponding to the tools the users

157



5 – Implementation

may run. Each tool may be opened by clicking at the corresponding icon. In figure
5.17 (b) is shown the user interface with certain tools opened.

5.5.1.1 Configuration

The UI needs the settings of some configuration parameters. The parameters are
contained in the file client.conf and refer to the URI of the web services invoked for
exploiting the functionalities of the several tools.

’server_name’ : ’http://’ + window.location.hostname,

’server_port’ : ’8080’,

’ws_p2p_bootstrap’ : ’/p2p/bootstrap’,

’ws_p2p_status’ : ’/p2p/status’,

’ws_p2p_disconnect’ : ’/p2p/disconnect’,

’ws_personalmemory_publish’ : ’/personalmemory/publish’,

’ws_personalmemory_search’ : ’/personalmemory/search’,

’ws_personalmemory_get’ : ’/personalmemory/reload’,

’ws_sharedmemory_publish’ : ’/sharedmemory/publish’,

’ws_sharedmemory_search’ : ’/sharedmemory/search’,

’ws_sharedmemory_getresults’ : ’/sharedmemory/getresults’,

’ws_ontology_load’ : ’/ontology/load’,

’ws_ontology_query’ : ’/ontology/query’,

client.conf

158



5.5 – Front-end Layer

5.5.2 Tools

The UI provides a set of tools: Indexing Tool, Indexing Pool, Local Resource, Notes,
Retrieval Tool. The set of tools can be extended for improving the UI with new
functionalities for different purposes.

5.5.2.1 Indexing Tool

The Indexing Tool is used for choosing the ontologies retrieved from the network
and for creating the keys of indexing. For creating a key of indexing, the Indexing
Tool and its indexing patterns allow to browse the ontologies selected by the user
such that only their currently relevant parts are displayed. The figure 5.18 shows a
view of the Indexing Tool where through the Iterative Pattern the key shown in the
Compund Key box is created.

Figure 5.18. The Indexing Tool

159



5 – Implementation

For associating a key of indexing to a resource, it is necessary to use the Indexing
Tool and the Indexing Pool. A simple drag and drop action from the first to the
second, enables to link the created key to a resource selected through the Indexing
Pool.

5.5.2.2 Indexing Pool

The Indexing Pool is a temporary container of (key, resource) pairs. The resources
may be published in both Shared Memory and Personal Memory.

The Indexing Pool allows users to select the resource they want to index and to
associate the key of indexing built with the Indexing Tool.

After select the resource they want to index, the selected resource is associated
to the key of indexing created through the indexing tool. The same key can identify
several resources. The key may be used either to publish the resource in the Personal
Memory or in the Shared Memory. The figure 5.19 shows the Indexing Pool where
seven resources are associated to seven keys of indexing.

160



5.5 – Front-end Layer

Figure 5.19. The Indexing Pool

5.5.2.3 Local Resource

The Local Resource tool allows to select resources from the local file system. Such
resources can be uploaded to the server in order to proceed with their publication.

161



5 – Implementation

5.5.2.4 Notes

The Notes is a tool that enables users to create personal notes. The Notes may be
associated to keys of indexing and published. The figure 5.20 shows the Notes tool
with the notes created by the user. The notes are moved to the Indexing Pool for
their publication.

Figure 5.20. The Notes tool

162



5.5 – Front-end Layer

5.5.2.5 Retrieval Tool

The Retrieval Tool allows users to submit queries to the system. It retrieves results
and displayes them.

To retrieve a resource, it is necessary to create a key of research. The process
is analogical to the one described for publishing. As soon as the key is completed,
the Retrieval Tool launches a request to the Personal Memory and/or to the Shared
Memory.

Figure 5.21. The Retrieval tool

163



5 – Implementation

164



Chapter 6

Experimentation

In this chapter, we describe the experiments performed on the System for testing
our approach. We specify the equipment and the configuration needed to execute
the experiments. We explain the test set of entries, created for using with various
Communities or peers. Finally, we discuss and compare the results of the experi-
ments.

6.1 Introduction

We executed some tests on the System in order to validate our approach and to
collect important information on its performance. For testing the approach, we
used a test set of entries that we created ad hoc, including the ontologies described
in section 4.1.3.1. We based our experiments on different Communities of P2P nodes.
Each test consisted in

• publishing the entries ((key, value) pairs) of the test set in the System;

• querying the System using the keys of the test set;

• calculating the number of successful and failed publications;

• calculating the number of successful and failed retrievals;

• calculating the time needed for retrieving the results.

6.2 Requirements

These experiments may be executed on various operating systems: Microsoft Win-
dows, Linux, Mac OS. There are no particular minimal hardware requirements or

165



6 – Experimentation

restrictions. It is necessary to configure the system with the Java Virtual Machine
version 6 or higher.

6.3 Test set of entries

The test set is a collection of entries composed of a group of keys of indexing and
a selection of 100 resources choosen from a local repository. For simplicity, such
resources have been renamed as Resource 1, Resource 2, . . . , Resource 100.

The test set is represented within an XML file named entries.xml. The file is
structured as follows:

<entries>

<entry>

<key>

<item> ... </item>

<item> ... </item>

...

</key>

<value> ... </value>

</entry>

. . .

</entries>

The tag <entry> corresponds to a (key, value) pair. Since a key may be composed
of several items, the tag <key> contains a list of tags <item>. The tag <value>

represents the resource. A key composed of several items will generate a list of
(key, value) pairs, related to the same value. Every (key, value) pair is published
individually.

For creating the keys of indexing we have used the system.owl ontology (with
namespace prefix system) and the set of 5 ontologies described in section 4.1.3.1,
summarized in the following table:

166



6.3 – Test set of entries

Table 6.1. Set of ontologies

Ontology file namespace prefix

lom.owl lom

lt.owl lt

tg-release3-1.owl tg

foaf.owl foaf

GeoSkills.owl geo

We consider the 7 cases of indexing (see section 4.3.4) and the respective exten-
sions. The next table shows the number of extensions for each case of indexing:

Table 6.2. Cases of indexing

Case Extensions

Concept none

Property none

Individual 1

Keyword none

Virtual individual 2

Iterative 1

Iterative + virtual individual 2

For each case of indexing, we created at most 10 keys (with respective extended
keys) for each ontology. There are 300 different keys. Considering the set of 100
resources, we assigned each key to 3 resources (3 keys / resource).

167



6 – Experimentation

The following is an excerpt of the file entries.xml :

<entries>

<entry>

<key>

<item> {rdf:type,system:Document}{system:hasInterest, lom:Axiom_1} </item>

</key>

<value> Resource_1 </value>

</entry>

. . .

<entry>

<key>

<item> {rdf:type,system:Document}{system:hasInterest, lom:idea} </item>

<item> {rdf:type,system:Document}{system:hasInterest, lom:Purpose} </item>

</key>

<value> Resource_10 </value>

</entry>

. . .

<entry>

<key>

<item> {rdf:type,system:Document}{system:hasInterest, geo:Reduce}

{geo:commonName, ’Minimal terms’} </item>

<item> {rdf:type,system:Document}{system:hasInterest, geo:Reduce} </item>

<item>{rdf:type,system:Document}{system:hasKeyword, ’Minimal terms’} </item>

</key>

<value> Resource_89 </value>

</entry>

. . .

</entries>

For simplicity reasons, we use the following namespace prefixes (abbreviations)
in the examples: rdf, system, lom, geo, etc. During the experiments, the abbreviated
namespace prefixes are substituted by their full names.

The test set is composed of only simple keys (these keys refer to simple descrip-
tions, 4.2.4). Complex keys (see complex description 4.2.5) are processed by simple
keys combined with the AND operator (see section 4.1.4.9). Queries by complex
keys generate multiple queries, one for each component simple key. The results are
collected together and the final result set is the intersection of their results. We do
not consider complex keys because the response time of a complex query is the sum
of the response times of the simple compounding queries.

168



6.4 – Test environment

6.4 Test environment

The test environment is created from the parts of the System able to manage a P2P
node and its features. It provides a script for each of the following functionalities:

• running a P2P node;

• running the publication;

• running the search.

For running a P2P node, it is necessary to provide the information about neigh-
bours available in the community. The first node that starts a P2P network is an
exception because it does not join any neighbours.

The script in charge of publishing the entries reads the file entries.xml. For each
item of each entry, the (item, value) pair is published in the DHT. A log file is
created for saving some information that results from the publication process. The
log file reports the success/failure message and the elapsed time of each publication.
It is possible to verify the quota of DHT stored in each peer. When a new entry
is published in the DHT, the System creates a unique identifier (composed of 160
bits). It is used for distinguishing the entry. The peer that saves the entry, creates
a new file named with the unique identifier. Since the entry is replicated, the same
file is created in more peers. It is possible to verify which entries are stored in a
particular peer by looking at the list of such files.

For searching within the DHT, the script reads the file entries.xml and for each
key runs a query. A log file saves the information related to this process. It reports
the message of successes and failures of the search operation. For each key of re-
search, the list of associated resources and the time necessary for getting the results
is reported.

6.5 Running the Tests

The following tests were executed creating different configurations of Communities.
We created Communities in a Local Area Network (LAN) exploiting both one single
computer and multiple computers. Moreover, we used a computer located in a
demilitarized zone (DMZ) and computers connected by ADSL.

In every organization a LAN is firewalled and protected from unsolicited external
access (in particular from Internet). For security reasons, an access to a LAN is
allowed only for trusted connections. A DMZ is a subnetwork (the segment of a
LAN) that exposes some services to the external access.

An ADSL connection to Internet is a form of connections performed through a
modem that uses an Internet Service Provider (ISP).

169



6 – Experimentation

In every test we measured the number of successes of both published and re-
trieved resources.

We measured the time needed for publishing and retrieving the resources.
After that, we disconnected some nodes in order to verify whether there was any

loss of data.

6.5.1 A Community of Multiple Nodes on the Same Com-
puter

The first test involves a Community of 10 nodes running on the same computer:
node 1, node 2, ... node 10. The node 1 runs first, creating a new Community. The
other nodes are created immediately after. The next figure shows the topology of
the P2P network.

Figure 6.1. Topology of P2P network of 10 nodes on the same computer

The node 9 runs the publication script. Publishing the 300 entries contained in
the entries.xml file, generates 550 entries. There is no failure during the publication
process. The significant times for publishing the entries are the following:

Minimum Publication Time: 9 ms.

170



6.5 – Running the Tests

Maximum Publication Time: 228 ms.
Average Publication Time: 21 ms.
The figure 6.2 shows a chart that reports the publication times for the 550 entries.

In this chart and in the one presented after that, the x-axis reports the sequence of
entries, while the y-axis reports time.

Figure 6.2. Publication times of 550 entries over 10 nodes on the same computer

Most entries require less than 50 ms for publishing.

171



6 – Experimentation

The entries are distributed (quota of DHT) among the 10 peers. Moreover, each
peer stores some replication of the entries. The following table shows the quota of
DHT among the peers:

Table 6.3. DHT among 10 peers

Peer entries

node 1 184

node 2 206

node 3 200

node 4 111

node 5 195

node 6 135

node 7 225

node 8 196

node 9 209

node 10 183

The sum of all the entries is 1.844 (including replicas), on average there are 184
entries per peer. Considering that we published 550 entries on 10 peers, there are
55 entries per peer. It means that each peer stores 3 replicas of other entries. An
entry is replicated on three other peers.

The node 10 runs the search script. Running the search script resulted in no
failures. The significant times for retrieving the results are the following:

Minimum Retrieval Time: 1 ms.
Maximum Retrieval Time: 239 ms.
Average Retrieval Time: 5 ms

172



6.5 – Running the Tests

The chart reported in figure 6.6 shows search times for the 550 entries.

Figure 6.3. Search times of 550 entries over 10 nodes on the same computer

The search times are all under 50 ms, except onw case where the response time is
239 ms. It may have depended on the bandwidth available when the test ran. Even
so, a longer response time is not problematic because query responses are collected
asynchronously.

173



6 – Experimentation

6.5.2 A Community of Nodes on Several Computers

The second test involves a Community of 7 nodes scattered on several computers:
node 1, node 2, ... node 7. The node 1 runs first, creating a new community. It
is located in DMZ, even though in this configuration the feature was not exploited
because the other nodes that were created immediately after, were located in the
same LAN. Nevertheless, it was interesting to investigate whether there is a decrease
in the performance that depended on the DMZ. The next figure shows the topology
of the P2P network.

Figure 6.4. Topology of P2P network of 7 nodes on several computers

The node 6 runs the publication script. There is no failure during the publication
process. The significant times for publishing the entries are the following:

Minimum Publication Time: 4 ms.
Maximum Publication Time: 105 ms.
Average Publication Time: 13 ms.

174



6.5 – Running the Tests

The figure 6.8 shows the chart of publication times for the 550 entries.

Figure 6.5. Publication times of 550 entries over 7 nodes on 5 computers

175



6 – Experimentation

The distribution of entries (quota of DHT) among the 7 peers is as follows:

Table 6.4. DHT among 7 peers

Peer entries

node 1 277

node 2 273

node 3 311

node 4 250

node 5 209

node 6 333

node 7 250

The sum of all the entries is 1.903 (including replicas), so on average there are
271 entries per peer. Considering that we published 550 entries on 7 peers, the
distribution is 78 entries per peer. So, each peer stores 3 replicas of other entries
and an entry is replicated on three other peers.

The node 7 runs the searching script. Running the search script there are no
failures. The significant times for getting the results are the following:

Minimum Retrieval Time: 1 ms.
Maximum Retrieval Time: 3008 ms.
Average Retrieval Time: 222 ms

176



6.5 – Running the Tests

The figure 6.6 shows the chart of search times for the 550 entries.

Figure 6.6. Search times of 550 entries over 7 nodes on 5 computers

There are some cases when the time needed to retrieve the results is higher than
3000 ms but the number of these cases is not significant.

177



6 – Experimentation

6.5.3 A Community Involving Nodes Connected to Internet
via ADSL

In this test, a Community of 5 nodes is scattered on several computers. The node 1
runs first, creating a new community. It is located in DMZ. The other nodes start
from computers connected to Internet via ADSL. In this case, it is fundamental to
have the node 1 located in DMZ. It allows the other nodes to join the Community.
The next figure shows the topology of the P2P network.

Figure 6.7. Topology of P2P network of 5 nodes on computers connected via ADSL

178



6.5 – Running the Tests

The connection to Internet takes place through a router with an ADSL modem
(ADSL is the faster data communications technology over the telephone line). The
router receives from the ISP the Internet Protocol 79.3.88.169. Two computers are
connected to the router, creating a small LAN. The router gives one local IP address
(192.168.0.2 and 192.168.0.3) to each. They are addressed by the IP of the router
on the Internet.

The node 4 runs the publication script. There is no failure during the publication
process. The significant times for publishing the entries are the following:

Minimum Publication Time: 5ms.
Maximum Publication Time: 104ms.
Average Publication Time: 10ms.
The figure 6.8 shows the chart of the publication times for the 550 entries.

Figure 6.8. Publication times of 550 entries over 5 nodes on computers
connected via ADSL

179



6 – Experimentation

The distribution of entries (quota of DHT) among the 5 peers is the following:

Table 6.5. DHT among 5 peers

Peer entries

node 1 359

node 2 305

node 3 305

node 4 436

node 5 306

The sum of all the entries is 1.711 (including replicas), then on average, there
are 342 entries per peer. Considering we have published 550 entries on 5 peers, the
distribution is 110 entries/peer. Also in this case, each peer stores 3 replicas of other
entries.

The node 5 runs the search script. There are some failures in running the search
script: we get 531 responses. The significant times for getting the results are the
following:

Minimum Retrieval Time: 1ms.
Maximum Retrieval Time: 60091ms.
Average Retrieval Time: 892ms

180



6.5 – Running the Tests

The figure 6.9 shows the chart of the search time for the 531 entries.

Figure 6.9. Search of 550 entries over 5 nodes on computers connected via ADSL

In some cases, the time needed to get the results is close to 30.000 ms. In other
cases, the same time is even closer to 60.000 ms. This behaviour depends on the
connection type of the nodes in the Community. The number of cases with a long
time of research is small.

181



6 – Experimentation

6.5.4 A Community of Multiple Nodes on Several Comput-
ers

The last test involves 5 computers that are located in the same LAN. Each computer
starts 10 nodes. In addition there are two other nodes, one for publication and
the other for research. So there is a Community of 52 nodes. The node 1 runs
first creating the new community. The next figure shows the topology of the P2P
network.

Figure 6.10. Topology of P2P network of 52 nodes on 5 computers

182



6.5 – Running the Tests

The node 4, the one started on the port 3340, runs the publication script. There
are no failures during the publication process. The significant times for publishing
the entries are the following:

Minimum Publication Time: 7ms.
Maximum Publication Time: 164ms.
Average Publication Time: 31ms.
The figure 6.11 shows the chart of publication times for the 550 entries.

Figure 6.11. Publication times of 550 entries over 52 nodes on 5 computers

The table 6.6 shows the distribution of entries (quota of DHT) among the 52
peers. Each row is related to the 5 different computers located within the LAN.
The columns refer to the different peers started on the same node. In addition, the
columns 11 and 12 refer to the peers used for the publication of entries and the one
used to perform the research.

The sum of all entries is 1.937 (including replicas), so on average there are
37 entries per peer. Considering that we published 550 entries on 52 peers, the
distribution is 10 entries/peer. Again, an entry is replicated on three other peers.

183



6 – Experimentation

Table 6.6. DHT among 52 peers

Peers|Peers 1 2 3 4 5 6 7 8 9 10 11 12

node 1 36 61 51 18 44 64 18 28 44 51

node 2 43 50 17 15 23 28 80 40 54 16 36 44

node 3 21 23 46 44 13 39 63 30 26 51

node 4 29 41 22 19 18 33 25 45 32 21

node 5 42 37 27 75 47 32 36 26 38 71

The node 2, the one started on the port 3341, runs the search script. There are
no failures in running the search script. The significant times for getting the results
are the following:

Minimum Retrieval Time: 3ms.
Maximum Retrieval Time: 373ms.
Average Retrieval Time: 12ms.

184



6.6 – Discussion

Figure 6.12. Search times of 550 entries over 52 nodes on 5 computers

6.6 Discussion

Our experiments show that the system can effectively support a community of users
scattered within a P2P network. We are interested mainly in communities located
within private networks such as LANs. At Universities or Companies it is usual
to create local sub-networks for internal purposes. We are also interested in Com-
munities constituted by users connected to Internet though ISP, where the issues of
firewalling are the main difficulty to overcome. The previous four tests were intended
to study these kinds of Communities.

The test set of entries created for these tests is composed of keys of indexing
representative of the set of ontologies discussed in this work. The entries contain
references to a selection of resources chosen from a local repository. Since there is
no need to keep the original name, we decided to simplify the resource file names to
the name ”Resource”. In this way, it was simpler to monitor the publication process
following the list of processed resources.

The results of our tests show that the publication time is less than 20 ms, except
for the last test. In the last test, the higher number of nodes affect the performance.
Even so, the publication time is less than 60 ms. It is an acceptable time and there

185



6 – Experimentation

are no particular reasons for having a high speed publication process.
The time elapse for searching is, in most cases, less than 50 ms. Sometimes

there are higher values, in certain cases close to 60.000ms. These cases are very
few. The higher times may depend on the topology of the Community and also on
the bandwidth available when the test runs. We can highlight that a long response
time is not alarming because the responses of queries are collected asynchronously.
Moreover, a query that does not answer in a fixed amount of time can be relaunched,
hoping for a more short response time.

When we modified the topology of the Community by disconnecting some nodes,
we saw that there was no loss of data within the DHT. This is so because the network
is safe-balancing. When a peer dies, the network keeps the same number of replicas
of the same entry of the DHT.

186



Chapter 7

Conclusions

In this chapter we summarize our work, and present an overview of possible future
research directions.

7.1 Contributions

In this work we have explored a solution for supporting communities of users who
have cultural goals in a specific domain. Community members are interested in
managing resources. Initially, the resources are privatly owned by each member.
Then, users may agree to share some of their resources with other community mem-
bers. We have created a system of resource management where each member of the
community owns a memory that has a private part, Personal Memory, containing
personal resources and a public part, Shared Memory, containing the documents
that have been shared within the community. We consider people who belong to a
loose community connected as a network of peer systems.

We based the peer system on a P2P network. To distribute data among thou-
sands or millions of peers involves a huge amount of information and a need for a
robust system free of restriction from a central authority. A P2P architecture avoids
both physical and semantic bottlenecks that limit information and knowledge ex-
change. We have chosen to build the P2P network on Pastry, a generic, scalable and
efficient substrate for P2P applications. We have used FreePastry, an open-source
implementation of Pastry.

We considered it convenient to use the same system of resource management for
the resources stored in the two types of memories. For managing the resources, we
use semantic indexing of the resources. With the semantic index, it is possible to
store and later retrieve the resources. The number of queries sent to the system
when the resources are searched must be minimized, because they are time consum-
ing. The model of a distributed index is necessarily boolean. In a boolean index,

187



7 – Conclusions

keys used for retrieving resources must be equal to the keys used for publishing.
However, people should be able to find a resource with other characteristics than
those used for publishing. The semantic index is composed of entries, pairs of data
(key, value). The key of indexing is based on the semantic description that a user
gives for describing the resource. The same model of keys is used when the resources
are searched. The value is the URL of the resource. The keys are created using do-
main ontologies. They are written in OWL and the keys are written in a language
based on RDF.

We have defined several cases of indexing. In each case we tackled the process of
description and the creation of the keys of indexing. In some cases, it was necessary
to perform slight adaptations of the process of creation of the keys. The cases of
indexing are based on the possible queries the system can answer. We have based
this aspect of the research on two possible kinds of queries, namely Content Query
Type and Resource Query Type that concern the content of a resource and the nature
of the resource itself, respectively.

For creating a key, we distinguished between publication and retrieval contexts.
The proposed solution foresees during the publication of a resource, different reason-
able retrieval situations and different queries to which the resource should respond
positively. We used reasoning based on the ontologies involved in the semantic de-
scription of a resource. Publication and retrieval contexts are different but may lead
to the same resources. Considering the shared memories, the number of queries that
are launched through the network are minimized in order to reduce the access time
to the resources.

Initially, the user conceives the query in ”natural language” and has to rephrase
it according to the structure of ontologies. The system considers the input of the
user and applies a mechanism based on the available ontologies for helping the
user to reformulate the query. The resources that are properly described are then
published in the Shared Memory (within the P2P network), or archived in the
Personal Memory.

The keys of indexing are created choosing concepts, individuals and relations
from the selected ontologies. Depending on the resulting keys, we proposed algo-
rithms for publishing and searching resources. We defined indexing patterns as the
generalization of the cases of indexing that correspond to a path within an ontology
and lead to the creation of the keys of indexing. The indexing patterns define a
sequence of steps during which the user interacts only with the relevant parts of the
ontology. The irrelevant parts are hidden. Selections at each step are inputs to the
next step. The indexing patterns are used for presenting the ontologies to users in
a friendly and easy-to-use way. We created a mechanism that is able to guide the
user during the selection of the important information contained in the ontologies.
The user follows a process of indexing, selecting first the ontology to use in order to
relate the resources with the elements contained in the ontology. For describing the

188



7.2 – Future Work

different examples presented in this work, we use a test set of ontologies. We also
developed a System Ontology for representing the resources of our system and that
allowed some cases of indexing.

Users grouped within communities may benefit from the system we developed.
Users need tools for accessing the functionality of the community. The system
provides a Web user interface, equipped with different tools presented within the
Semantic Desktop and integrated within a web application. The web user interface
gives a common access to the tools and allows easy communication among all users.
The architecture back-end consists of a set of web services for managing the resources
and giving access to the P2P network, the Personal Memory and the Shared Memory.

We validated our solution in various experiments. Our experiments show that the
system can effeciently support a community of users scattered within a P2P network.
We considered various situations where the communities are located within private
networks (LANs), or consist of users connected to the Internet through an ISP.

7.2 Future Work

Our work can be improved and extended in several research directions:

• Exchange with an external system. An external user is a person interested
in discovering resources distributed within the community network and not
owner of a peer. Generally, she is using another (preferably semantically based)
system for storing resources. She should be allowed to link to a peer of the
community and to exchange messages with it.

An external system can only query our system. It cannot publish resources in
the network without being a peer and cannot access to any private memory.
In order to access resources of the community, an external system should have
to create a semantic description of potential resources based on RDF, com-
municate it to the selected peer and receive URLs of corresponding resources.
Starting from this description, our system would have to create a set of keys
and launch corresponding requests to the network.

However some preconditions are necessary for successful results. The external
system must be aware of the ontologies used by the community in order to
have adapted results. A specific request for exporting these ontologies could
be implemented.

Publications by external systems are not really usefull because it is necessary
to face the issue of delivering a copy of the resource.

• Multilingual issues. Many of the elements of ontologies and knowledge bases

189



7 – Conclusions

are displayed in user interfaces using one of the values of rdfs:label. The fol-
lowing example shows the Document concept of the System Ontology:

<owl:Class rdf:ID="Document">

<rdfs:subClassOf rdf:resource="owl:Thing"/>

<rdfs:label xml:lang="en">Document</rdfs:label>

<rdfs:label xml:lang="fr">Document</rdfs:label>

<rdfs:label xml:lang="it">Documento</rdfs:label>

<rdfs:comment xml:lang="en">

The type of a resource used when describing its content.

</rdfs:comment>

</owl:Class>

There is no problem with adapting tools in the user interface to a particular
language as long as ontologies used for indexing are really multilingual.

The issue concerns resources indexed on keywords or indexed on virtual indi-
viduals because the user has to add at least one string in order to describe this
individual. In case of keywords for expressing natural language text, RDF uses
literal nodes. Carrol and Phillips [22] show that literal nodes are either plain
literals or typed literals. A plain literal is simply a string and does not contain
any type indication. It is not generally appropriate for expressing one thing in
different languages (except some specific acronyms). Using additional markup
for supporting multilingual issues, the approach we should take is to ask the
user to insert different strings for each language intended to be supported and
to embed within the description key the literal and the language tag.

• Evaluation. An evaluation of the system by a community of users is yet to
be performed. A set of experiments should prove that the system can really
support the sharing of resources. Collected results might show several aspects
of the life of the community, like the use of the wiki and the diffusion of notes.
Some comments would be useful for improving the user interface.

• Advanced navigation system for ontologies. The user interface could be en-
hanced with a richer navigation system for ontologies. A graphical system of
navigation that allows both exploration of the content of the ontologies through
appropriate visualisations and the indexing of resources could be helpful. This
would allow one to better organize the visual composition of represented data.
A 3-dimensional view would be more efficient for browsing as it involves oper-
ations such as zooming, rotating, and translating. The use of different colours
allows to add insights on the representation.

190



7.2 – Future Work

• User profiling. Creating the profiles of community users would allow to im-
prove the quality of some requests and also their automation. Agents inserted
in peer software could warn the user of new publications by regularly requesting
the network with preferred and bookmarked queries. Users might be profiled
with respect to the tools they use more frequently, the kinds of ontologies they
prefer, the kinds of queries they submit, the kinds of patterns they use more
frequently, etc. As a result, it would be possible to discover ontologies that
the system is missing or ontologies that are incomplete.

191



7 – Conclusions

192



Bibliography

[1] Renzo Angles and Claudio Gutierrez. The expressive power of SPARQL. Tech-
nical Report TR/DCC-2008-5, Department of Computer Science, Universidad
de Chile, 2008.

[2] Ali Arsanjani and Abdul Allam. Service-Oriented Modeling and Architecture
for Realization of an SOA. In SCC ’06: Proceedings of the IEEE Interna-
tional Conference on Services Computing, Washington, DC, USA, 2006. IEEE
Computer Society.

[3] Franz Baader. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, September 2007.

[4] Franz Baader, Hans-Jürgen Bürckert, Jochen Heinsohn, Bernhard Hollunder,
Jürgen Müller, Bernhard Nebel, Werner Nutt, and Hans-Jürgen Profitlich.
Terminological Knowledge Representation: A Proposal for a Terminological
Logic. In Description Logics, pages 120–128, 1991.

[5] Franz Baader and Ulrike Sattler. Tableau algorithms for description logics.
Studia Logica: An International Journal for Symbolic Logic, 2001.

[6] Alan Beaulieu. Learning SQL. O’Reilly Media, Inc., 2005.

[7] Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. Oiled: a
reason-able ontology editor for the semantic web. In Proceedings of KI2001,
Joint German/Austrian conference on Artificial Intelligence, pages 396–408.
Springer-Verlag, 2001.

[8] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
Mcguinness, Peter F. Patel-Schneider, and Lynn A. Stein. OWL Web On-
tology Language Reference. W3C Recommendation http://www.w3.org/TR/

owl-ref/, February 2004.

[9] Dave Beckett. RDF/XML Syntax Specification (Revised). W3C Recommen-
dation http://www.w3.org/TR/rdf-syntax-grammar/, February 2004.

[10] Tim Berners-Lee. Semantic web roadmap.
http://www.w3.org/DesignIssues/Semantic.html, 1998.

[11] Tim Berners-Lee. Linked data. W3C Design Issues, 2006.

[12] Tim Berners-Lee. Notation 3: A readable language for data on the web.
Available online at http://www.w3.org/DesignIssues/Notation3.html, March

193

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-syntax-grammar/


Bibliography

2006.
[13] Tim Berners-Lee and Mark Fischetti. Weaving the Web : The Original Design

and Ultimate Destiny of the World Wide Web by its Inventor. Harper San
Francisco, September 1999.

[14] Romaric Besançon, Martin Rajman, and Jean-Cédric Chappelier. Textual
similarities based on a distributional approach. In DEXA Workshop, pages
180–184, 1999.

[15] Paul V. Biron and Ashok Malhotra. XML Schema Part 2:
Datatypes. W3C Recommendation http://www.w3.org/TR/2001/

REC-xmlschema-2-20010502/, May 2001.
[16] Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness, and

Lori Alperin Resnick. CLASSIC: a structural data model for objects. In SIG-
MOD ’89: Proceedings of the 1989 ACM SIGMOD international conference
on Management of data, pages 58–67, New York, NY, USA, 1989. ACM.

[17] Alessio Bosca, Dario Bonino, and Paolo Pellegrino. P.: Ontosphere: more
than a 3d ontology visualization tool. In In: SWAP 2005, the 2nd Italian
Semantic Web Workshop. CEUR Workshop Proceedings. (2005, 2005.

[18] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0:
RDF Schema. W3C Recommendation http://www.w3.org/TR/rdf-schema/,
February 2004.

[19] Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.98. http:
//xmlns.com/foaf/spec/, August 2010.

[20] Bill Burke. RESTful Java with Jax-RS. O’Reilly Media, Inc., 1st edition,
2009.

[21] Vannevar Bush. As we may think. The Atlantic Monthly, pages 101–108, July
1945.

[22] Jeremy J. Carroll and Addison Phillips. Multilingual rdf and owl. In In
European Semantic Web Conference, pages 108–122, 2005.

[23] Doina A. Cernea, Esther Del Moral, and Jose E. Labra Gayo. SOAF: Semantic
Indexing System Based on Collaborative Tagging. Interdisciplinary Journal
of E-Learning and Learning Objects, 4:137–149, 2008.

[24] Yatin Chawathe, Sriram Ramabhadran, Sylvia Ratnasamy, Anthony LaMarca,
Scott Shenker, and Joseph Hellerstein. A case study in building layered dht
applications. SIGCOMM Comput. Commun. Rev., 35:97–108, August 2005.

[25] Yatin Chawathe, Sriram Ramabhadran, Sylvia Ratnasamy, Anthony LaMarca,
Scott Shenker, and Joseph Hellerstein. A case study in building layered dht
applications. In SIGCOMM ’05: Proceedings of the 2005 conference on Ap-
plications, technologies, architectures, and protocols for computer communica-
tions, pages 97–108, New York, NY, USA, 2005. ACM.

[26] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet:
A distributed anonymous information storage and retrieval system. Lecture

194

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/rdf-schema/
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/


Bibliography

Notes in Computer Science, 2009:46–??, 2001.

[27] Adina Crainiceanu, Prakash Linga, Johannes Gehrke, and Jayavel Shanmu-
gasundaram. Querying peer-to-peer networks using p-trees. In Sihem Amer-
Yahia and Luis Gravano, editors, WebDB, Proceedings of the Seventh Inter-
national Workshop on the Web and Databases, pages 25–30, 2004.

[28] Richard Cyganiak. A relational algebra for SPARQL. Technical Report HPL-
2005-170, HP Laboratories Bristol, September 2005.

[29] Ian Jacobs Dave Raggett, Arnaud Le Hors. Html 4.01 specification.
http://www.w3.org/TR/html401/, 1999.

[30] John Davies, Dieter Fensel, and Frank van Harmelen. Towards the Semantic
Web: Ontology-Driven Knowledge Management. John Wiley & Sons, January
2003.

[31] Stefan Decker and Martin Frank. The social semantic desktop. Technical
Report DERI-TR-2004-05-02, DERI Galway, Galway, Ireland, May 2004.

[32] Peter Druschel and Antony Rowstron. Past: A large-scale, persistent peer-to-
peer storage utility. In In HotOS VIII, pages 75–80, 2001.

[33] M. Duerst and M. Suignard. Internationalized resource identifiers (IRIs). RFC
3987, January 2005.

[34] Marc Ehrig, Christoph Tempich, Jeen Broekstra, Frank van Harmelen, Marta
Sabou, Ronny Siebes, Steffen Staab, and Heiner Stuckenschmidt. Swap
- ontology-based knowledge management with peer-to-peer technology. In
WOW, 2003.

[35] Roy T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

[36] Ian T. Foster and Adriana Iamnitchi. On death, taxes, and the convergence
of peer-to-peer and grid computing. In M. Frans Kaashoek and Ion Stoica,
editors, IPTPS, volume 2735 of Lecture Notes in Computer Science, pages
118–128. Springer, 2003.

[37] Valentina Presutti Aldo Gangemi. Ontology design patterns. In Rudi
Studer Steffen Staab, editor, Handbook of Ontologies, International Handbooks
on Information Systems. Springer, 2nd edition, 2009.

[38] O. Ghebghoub, M.-H. Abel, C. Moulin, and A. Leblanc. A lom ontology put
into practice. In Second International Conference on Web and Information
Technologies, ICWIT 2009, Kerkennah Island Sfax, Tunisia, June 12-14 2009.

[39] O. Ghebghoub, M.-H. Abel, C. Moulin, and A. Leblanc. A lom ontology put
into practice. In Second International Conference on Web and Information
Technologies, ICWIT 2009, Kerkennah Island Sfax, Tunisia, June 12-14 2009.

[40] Thomas R. Gruber. A translation approach to portable ontology specifica-
tions. Knowl. Acquis., 5(2):199–220, June 1993.

[41] Thomas R. Gruber. Toward principles for the design of ontologies used for

195



Bibliography

knowledge sharing. International Journal of Human-Computer Studies, 43(5-
6):907–928, 1995.

[42] Thomas R. Gruber. Toward principles for the design of ontologies used for
knowledge sharing. Int. J. Hum.-Comput. Stud., 43:907–928, December 1995.

[43] Marc Hadley and Paul Sandoz. Jax-rs: Java api for restful web services.
Available online at http://jcp.org/en/jsr/detail?id=311, September 2008.

[44] Andreas Harth. Seco: Mediation services for semantic web data. IEEE Intel-
ligent Systems, 19:66–71, 2004.

[45] Andreas Harth and Stefan Decker. Optimized index structures for querying
rdf from the web. In LA-WEB ’05: Proceedings of the Third Latin American
Web Congress, pages 71–80, Washington, DC, USA, 2005. IEEE Computer
Society.

[46] Erik Hatcher, Otis Gospodnetic, and Mike McCandless. Lucene in Action.
Manning, 2nd revised edition. edition, 8 2010.

[47] Patrick Hayes. Rdf semantics. W3C Recommendation http://www.w3.org/

TR/rdf-mt/, February 2004.
[48] Pascal Hitzler, Markus Krtzsch, Bijan Parsia, Peter F. Patel-Schneider, and

Sebastian Rudolph. OWL 2 Web Ontology Language Primer. W3C Recom-
mendation, World Wide Web Consortium, October 2009.

[49] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector, and Hai H
Wang. The manchester owl syntax. In In Proc. of the 2006 OWL Experiences
and Directions Workshop (OWL-ED2006, 2006.

[50] Ian Horrocks, Dieter Fensel, Jeen Broekstra, Stefan Decker, Michael Erdmann,
Carole Goble, Frank van Harmelen, Michel Klein, Steffen Staab, Rudi Studer,
and Enrico Motta. The Ontology Inference Layer OIL. Technical report, Vrije
Universiteit Amsterdam, Faculty of Sciences., 2000.

[51] Elena Paslaru Bontas Jing Mei. Reasoning paradigms for ow ontologies. Tech-
nical Report B-04-12, Department of Information Science, Freie Universitat
Berlin, 2004.

[52] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau, and
James Hendler. Swoop: A web ontology editing browser. Journal of Web
Semantics, 4:2005, 2005.

[53] Zoi Kaoudi, Manolis Koubarakis, Kostis Kyzirakos, Iris Miliaraki, Matoula
Magiridou, and Antonios Papadakis-Pesaresi. Atlas: Storing, updating and
querying rdf(s) data on top of dhts. Web Semant., 8:271–277, November 2010.

[54] Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov. Owlim - a prag-
matic semantic repository for owl. In WISE Workshops, pages 182–192, 2005.

[55] T. Klinberg and R. Manfredi. Gnutella protocol specification. http://rfc-
gnutella.sourceforge.net/developer/index.html, June 2002.

[56] Graham Klyne and Jeremy J. Carroll. Resource Description Framework
(RDF): Concepts and Abstract Syntax. W3C Recommendation http://www.

196

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/


Bibliography

w3.org/TR/rdf-concepts/, February 2004.

[57] Nathaniel Leibowitz, Matei Ripeanu, and Adam Wierzbicki. Deconstructing
the kazaa network. In WIAPP ’03: Proceedings of the The Third IEEE Work-
shop on Internet Applications, page 112, Washington, DC, USA, 2003. IEEE
Computer Society.

[58] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A scalable and
dynamic emulation of the butterfly. In In Proceedings of the 21st annual ACM
symposium on Principles of distributed computing, pages 183–192, 2002.

[59] Frank Manola and Eric Miller. RDF Primer. W3C Recommendation http:

//www.w3.org/TR/rdf-primer/, February 2004.

[60] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information sys-
tem based on the xor metric. In IPTPS ’01: Revised Papers from the First
International Workshop on Peer-to-Peer Systems, pages 53–65, London, UK,
2002. Springer-Verlag.

[61] Jeffrey C Mogull. Representing information about files. PhD thesis, Stanford
University, Stanford, CA, USA, 1986.

[62] Tim D. Moreton, Ian A. Pratt, and Timothy L. Harris. Storage, mutability
and naming in pasta. In Enrico Gregori, Ludmila Cherkasova, Gianpaolo Cu-
gola, Fabio Panzieri, and Gian Pietro Picco, editors, NETWORKING Work-
shops, volume 2376 of Lecture Notes in Computer Science, pages 215–219.
Springer, 2002.

[63] C. Moulin, F. Bettahar, M. Sbodio, J.-P. Barthes, and N. Korda. Adding
support to user interaction in egovernment environment. In 4th Atlantic Web
Intelligence Conference, AWIC’06, Beer-Sheva, Israel, 2006.

[64] Claude Moulin, Jean-Paul Barthes, Fathia Bettahar, and Marco Sbodio. Rep-
resentation of semantics in an e-government platform. In 6th Eastern European
eGovernment Days, Prague, Czech Republic, 2008.

[65] Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek,
Ambjörn Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch. Edutella:
a p2p networking infrastructure based on rdf. In WWW, pages 604–615, 2002.

[66] Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubezy, Ray W.
Fergerson, and Mark A. Musen. Creating semantic web contents with protege-
2000. In Protg-2000. IEEE Intelligent Systems (2001, pages 60–71, 2001.

[67] Bijan Parsia and Evren Sirin. Pellet: An owl dl reasoner. In 3rd International
Semantic Web Conference (ISWC2004), 2004.

[68] A. Passadore, A. Grosso, and A. Boccalatte. An agent-based semantic search
engine for scalable enterprise applications. In Proceedings of the 3rd Inter-
national Workshop on Ontology, Conceptualization and Epistemology for In-
formation Systems, Software Engineering and Service Science (ONTOSE’09),
volume 460, pages 82–94, 2009.

197

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/


Bibliography

[69] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. Owl web ontol-
ogy language semantics and abstract syntax section 5. rdf-compatible model-
theoretic semantics. Technical report, W3C, December 2004.

[70] Peter F. Patel-Schneider and Ian Horrocks. OWL Web Ontology Lan-
guage Semantics and Abstract Syntax - Section 4. Mapping to RDF Graphs.
W3C Recommendation http://www.w3.org/TR/owl-semantics/mapping.

html, February 2004.
[71] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complex-

ity of SPARQL. pages 30–43. 2006.
[72] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics of SPARQL.

Technical Report TR/DCC-2006-17, Department of Computer Science, Uni-
versidad de Chile, May 2006.

[73] Woody Pidcock. What are the differences between a vocabulary, a taxonomy,
a thesaurus, an ontology, and a meta-model? ., January 2003.

[74] Ian Pratt and Jon Crowcroft. Peer-to-peer systems: Architectures and per-
formance. networking 2002 tutorial session,, May 2002.

[75] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for
RDF. W3C Recommendation http://www.w3.org/TR/rdf-sparql-query/,
January 2008.

[76] Gang Qian, Qiang Zhu, Qiang Xue, and Sakti Pramanik. The nd-tree: A
dynamic indexing technique for multidimensional non-ordered discrete data
spaces. In VLDB, pages 620–631, 2003.

[77] Sriram Ramabhadran, Sylvia Ratnasamy, Joseph M. Hellerstein, and Scott
Shenker. Prefix hash tree: An indexing data structure over distributed hash
tables, 2004.

[78] M. Ramos, C.A. Tacla, G. Sato, E. Paraiso, and J.-P.A. Barthès. Dialog
construction in a collaborative project management environment. In IEEE,
editor, The 14th International Conference on Computer Supported Cooper-
ative Work in Design (CSCWD 2010), volume CD/IEEE Catalog Number
CFP10797-ART, 2010.

[79] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A scalable content-addressable network. In SIGCOMM ’01: Pro-
ceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, volume 31, pages 161–172, New
York, NY, USA, October 2001. ACM.

[80] D. Rodriguez and M.-A. Sicilia. Defining spem 2 process constraints with
semantic rules using swrl. In Proceedings of the Third International Workshop
on Ontology, Conceptualization and Epistemology for Information Systems,
Software Engineering and Service Science (ONTOSE’09), volume 460, pages
95–104, 2009.

[81] Antony Rowstron and Peter Druschel. Storage management and caching in

198

http://www.w3.org/TR/owl-semantics/mapping.html
http://www.w3.org/TR/owl-semantics/mapping.html
http://www.w3.org/TR/rdf-sparql-query/


Bibliography

past, a large-scale, persistent peer-to-peer storage utility. SIGOPS Oper. Syst.
Rev., 35(5):188–201, 2001.

[82] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In Middle-
ware, pages 329–350, 2001.

[83] Antony I. T. Rowstron and Peter Druschel. Storage management and caching
in past, a large-scale, persistent peer-to-peer storage utility. In SOSP, pages
188–201, 2001.

[84] Gerard. Salton. Automatic Information Organization and Retrieval. McGraw
Hill Text, 1968.

[85] Gerard Salton, Edward A. Fox, and Harry Wu. Extended boolean information
retrieval. Commun. ACM, 26(11):1022–1036, 1983.

[86] Chatree Sangpachatanaruk and Taieb Znati. Semantic driven hashing (sdh):
An ontology-based search scheme for the semantic aware network (sa net). In
P2P ’04: Proceedings of the Fourth International Conference on Peer-to-Peer
Computing, pages 270–271, Washington, DC, USA, 2004. IEEE Computer
Society.

[87] Leo Sauermann. The gnowsis-using semantic web technologies to build a se-
mantic desktop. Diploma thesis, Technical University of Vienna, 2003.

[88] Leo Sauermann, Ansgar Bernardi, and Andreas Dengel. Overview and outlook
on the semantic desktop. In Dennis and Leo Sauermann, editors, Proceedings
of the 1st Workshop on The Semantic Desktop at the ISWC 2005 Conference,
2005.

[89] Leo Sauermann, Gunnar Aastrand Grimnes, Malte Kiesel, Christiaan Fluit,
Heiko Maus, Dominik Heim, Danish Nadeem, Benjamin Horak, and Andreas
Dengel. Semantic desktop 2.0: The gnowsis experience. In The Semantic Web
- ISWC 2006, volume Volume 4273/2006, pages 887–900. Springer Berlin /
Heidelberg, 2006.

[90] James G. Schmolze, Bolt Beranek, and Newman Inc. An overview of the KL-
ONE knowledge representation system. Cognitive Science, 9:171–216, 1985.

[91] Michael D. Schroeder, Andrew Birrell, and Roger M. Needham. Experience
with grapevine: The growth of a distributed system. ACM Trans. Comput.
Syst., 2(1):3–23, 1984.

[92] Fabrizio Sebastiani. Machine learning in automated text categorization.
CoRR, cs.IR/0110053, 2001.

[93] A. Sheth, C. Bertram, D. Avant, B. Hammond, K. Kochut, and Y. Warke.
Semantic content management for enterprises and the web, 2002.

[94] Alessandro Soro and Cristian Lai. Range-capable distributed hash tables.
In Ross Purves and Chris Jones, editors, GIR, Proceedings of the 3rd ACM
Workshop On Geographic Information Retrieval, pages 44–47. Department of
Geography, University of Zurich, 2006.

199



Bibliography

[95] Steffen Staab and Heiner Stuckenschmidt, editors. Semantic Web and Peer-
to-Peer: Decentralized Management and Exchange of Knowledge and Infor-
mation. Springer, Berlin, 2006.

[96] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for internet applica-
tions. In SIGCOMM ’01: Proceedings of the 2001 conference on Applications,
technologies, architectures, and protocols for computer communications, pages
149–160, New York, NY, USA, 2001. ACM.

[97] York Sure, Juergen Angele, and Steffen Staab. Ontoedit: Multifaceted in-
ferencing for ontology engineering. Journal on Data Semantics, 2800:2003,
2003.

[98] Vanderwal T. Folksonomy: Folksonomy coinage and definition.
http://vanderwal.net/folksonomy.html, 2007.

[99] Giovanni Tummarello, Christian Morbidoni, Joackin Petersson, Paolo Puliti,
and Francesco Piazza. Rdfgrowth, a p2p annotation exchange algorithm for
scalable semantic web applications. In P2PKM, 2004.

[100] Mike Uschold. Building ontologies: Towards a unified methodology. In In
16th Annual Conf. of the British Computer Society Specialist Group on Expert
Systems, pages 16–18, 1996.

[101] Emanuele Della Valle, Andrea Turati, and Alessandro Ghioni. Age: A dis-
tributed infrastructure for fostering rdf-based interoperability. In DAIS, pages
347–353, 2006.

[102] Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. An efficient indexing
technique for full text databases. In Li-Yan Yuan, editor, VLDB, pages 352–
362. Morgan Kaufmann, 1992.

200


	Acknowledgements
	Summary
	Introduction
	Motivation
	Proposed Solution and Contributions
	Thesis Outline

	Preliminaries
	Semantic Web
	Representation Languages
	SPARQL for Querying Data
	RDF and SPARQL Syntax
	Reasoning

	Fundamentals on Description Logics
	Syntax and Semantics

	P2P Systems
	P2P history
	Unstructured and Structured P2P Networks
	Pastry


	Related Work
	Semantic Desktop
	Distributed Systems
	Distributed Index
	Semantic Indexing
	Discussion of Related Work
	Requirements and choices

	Research
	Semantic Indexing
	Introduction
	Approach
	Ontologies and Knowledge Bases
	Types of Queries

	Resources Description
	Introduction
	Sequence of Properties
	Description Tree
	Simple Description
	Complex Description

	Creation of Keys
	Introduction
	Description Representation
	Context Extension
	Cases of Indexing

	Use of Ontologies
	Ontological Elements
	The System Ontology

	Indexing Pattern
	Introduction
	Definition of Pattern
	Indexing Pattern on a Concept
	Indexing Pattern on an Individual
	Indexing Pattern on a Keyword
	Iterative Indexing Pattern
	Iterative Indexing Pattern Involving a Virtual Individual

	Main notions about Community
	Introduction
	Community Resources
	Semantic Desktop
	Semantic Links


	Implementation
	System Overview
	Community
	User Peer
	Joining the Community

	Architecture
	Function Layer
	Ontology
	P2P
	Memory

	Services Layer
	P2PWS
	PersonalMemoryWS
	SharedMemoryWS
	OntologyWS

	Front-end Layer
	User Interface
	Tools


	Experimentation
	Introduction
	Requirements
	Test set of entries
	Test environment
	Running the Tests
	A Community of Multiple Nodes on the Same Computer
	A Community of Nodes on Several Computers
	A Community Involving Nodes Connected to Internet via ADSL
	A Community of Multiple Nodes on Several Computers

	Discussion

	Conclusions
	Contributions
	Future Work

	Bibliography

